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Langmuir turbulence in shallow water.
Part 2. Large-eddy simulation
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Results of large-eddy simulation (LES) of Langmuir circulations (LC) in a wind-driven
shear current in shallow water are reported. The LC are generated via the well-known
Craik–Leibovich vortex force modelling the interaction between the Stokes drift,
induced by surface gravity waves, and the shear current. LC in shallow water is
defined as a flow in sufficiently shallow water that the interaction between the LC
and the bottom boundary layer cannot be ignored, thus requiring resolution of the
bottom boundary layer. After the introduction and a description of the governing
equations, major differences in the statistical equilibrium dynamics of wind-driven
shear flow and the same flow with LC (both with a bottom boundary layer) are
highlighted. Three flows with LC will be discussed. In the first flow, the LC were
generated by intermediate-depth waves (relative to the wavelength of the waves and
the water depth). The amplitude and wavelength of these waves are representative of
the conditions reported in the observations of A. E. Gargett & J. R. Wells in Part 1
(J. Fluid Mech. vol .000, 2007, p. 00). In the second flow, the LC were generated by
shorter waves. In the third flow, the LC were generated by intermediate waves of
greater amplitude than those in the first flow. The comparison between the different
flows relies on visualizations and diagnostics including (i) profiles of mean velocity, (ii)
profiles of resolved Reynolds stress components, (iii) autocorrelations, (iv) invariants
of the resolved Reynolds stress anisotropy tensor and (v) balances of the transport
equations for mean resolved turbulent kinetic energy and resolved Reynolds stresses.
Additionally, dependencies of LES results on Reynolds number, subgrid-scale closure,
size of the domain and grid resolution are addressed.

In the shear flow without LC, downwind (streamwise) velocity fluctuations are
characterized by streaks highly elongated in the downwind direction and alternating
in sign in the crosswind (spanwise) direction. Forcing this flow with the Craik–
Leibovich force generating LC leads to streaks with larger characteristic crosswind
length scales consistent with those recorded by observations. In the flows with LC,
in the mean, positive streaks exhibit strong intensification near the bottom and near
the surface leading to intensified downwind velocity ‘jets’ in these regions. In the flow
without LC, such intensification is noticeably absent. A revealing diagnostic of the
structure of the turbulence is the depth trajectory of the invariants of the resolved
Reynolds stress anisotropy tensor, which for a realizable flow must lie within the
Lumley triangle. The trajectory for the flow without LC reveals the typical structure
of shear-dominated turbulence in which the downwind component of the resolved
normal Reynolds stresses is greater than the crosswind and vertical components. In
the near bottom and surface regions, the trajectory for the flow with LC driven by
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wave and wind forcing conditions representative of the field observations reveals a
two-component structure in which the downwind and crosswind components are of
the same order and both are much greater than the vertical component. The two-
component structure of the Langmuir turbulence predicted by LES is consistent with
the observations in the bottom third of the water column above the bottom boundary
layer.

1. Introduction
Langmuir circulations (LC), often occurring in the wind- and wave-driven surface

mixed layer of lakes and oceans, consist of pairs of parallel counter-rotating vortices
(or cells) oriented approximately in the downwind direction. Originally characterized
by Langmuir (1938), Langmuir cells are now generally accepted to be the result of
the interaction between the wind-driven shear current and the Stokes drift current
induced by surface gravity waves (Thorpe 2004). Langmuir cells are among several
flow phenomena generating turbulence in the upper ocean; others include wind- or
tidal-driven shear flows, buoyancy-driven convection and wave breaking. As with all
turbulent flows, Langmuir turbulence encompasses a range of spatial and temporal
scales. Amongst the larger spatial scales in Langmuir turbulence are those of the
cells which extend in the downwind direction for tens of metres to kilometres and
are separated by distances ranging from metres to as much as a kilometre (Thorpe
2004). As might be expected, a cell is neither steady nor uniformly spaced, but rather
interacts with itself and other cells. In general, Langmuir turbulence is an important
process for vertical mixing over a wide range of scales as well as for transport when
combined with a horizontal shear current.

Thorpe (2004) reviewed the numerous field observations of LC that have been
made over the last few decades. These observations include those made with vertical
profilers, vector measuring current meters, backscatter intensity sonar, side-scan sonar
and Doppler sonar. Most of these observations have recorded LC in the ocean surface
mixed layer over deep water. As reported in Gargett & Wells (2007, hereinafter referred
to as Part 1), recent field observations have led to the discovery of LC extending
throughout most of the water column at a particular location on the shallow shelf
coastal region of southern New Jersey undergoing strong wind and wave forcing. Such
LC, reaching to the bottom boundary layer, have been termed supercells (Gargett
et al. 2004; Part 1) because of their profound influence on sediment resuspension and
transport. For example, on shallow shelves, currents and Langmuir supercells (LSC)
driven by offshore winds can transport sediment and bioactive material episodically
to the deep sea. Alternatively, episodic strong onshore winds can generate currents
and LSC thereby creating favourable conditions for the transport of nutrients and
biological material to shallow inner shelves (Gargett et al. 2004).

A model for the generation of LC was first proposed by Craik & Leibovich (1976).
It consists of a vortex force (the Craik–Leibovich force or C-L force) in the momentum
equations modelling the interaction between the Stokes drift, driven by the surface
waves, and the vertical shear of the current; specifically, it is the vector cross-product
between the Stokes drift velocity and the flow vorticity. The derivation of the Craik–
Leibovich force is subtle, requiring low-pass time filtering or wave-phase averaging
in order to filter out the high-frequency surface waves. Note that the averaging
is not ensemble averaging so that the resulting equations are not of the RANS
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(Reynolds-averaged Navier–Stokes) type. However, because of the low-pass time
filtering, these equations cannot represent the complete range of space and time
scales of a turbulent flow, and thus would not be appropriate for carrying out direct
numerical simulations (DNS) of flows with LC. Instead, these equations can only
represent a range of scales from the largest eddies to those just above the filter cutoff,
and thus can be thought of as the large-eddy equations. Hereinafter, the time filtered
Navier–Stokes equations with the Craik–Leibovich force will be referred to as the
C-L equations.

Since the C-L equations were derived there have been a number of generalizations,
extensions and applications of them. Leibovich (1977a) derived the C-L equations
while including a wind drift current and Leibovich & Radhakrishnan (1997b) carried
out numerical simulations of the resulting flow field for a model problem. Also,
Leibovich (1977c) extended the equations to permit density stratification and showed
that the C-L force led to a convective instability even in the presence of statically stable
stratification. Craik (1977) showed that the C-L force can lead to an instability and
that the Stokes drift can be that due to a random wave field. Leibovich (1983) sum-
marized the state of knowledge of LC, both experimental and theoretical, to that date.

In the mid 1980s, work on LC continued to be focused on extensions and varied
applications of the C-L equations. For example, Leibovich (1985) and Leibovich,
Lele & Moroz (1989) examined nonlinear instabilities. Further work was directed
toward three-dimensional LC flow as Cox & Leibovich (1993, 1994, 1997) developed
‘reduced’ sets of the governing equations in two spatial dimensions which reflected the
flow structure in the third dimension while decoupling the upper ocean mixed layer
from pycnocline motion. Leibovich & Tandon (1993) examined the three-dimensional
instability of motion due to LC in water of finite depth using simplifying assumptions
such as linear dependence on depth of mean shear flow, temperature and Stokes drift
velocity as well as constant eddy viscosity. Later work (Tandon & Leibovich 1995a)
showed that the unstable modes could themselves become unstable to secondary
modes. Also, Tandon & Leibovich (1995b) carried out numerical simulations of the
nonlinear equations for the same problem (but with constant density). These studies,
even with simplifications, showed that a varied set of flows with LC are possible.
Chini & Leibovich (2003, 2005) examined the interaction between LC and low-mode
internal waves.

There have also been a number of alternative approaches to the derivation of the
C-L equations. Leibovich (1980) and Craik (1985) derived the C-L equations from the
generalized Lagrangian mean (GLM) equations whose exact form was first derived by
Andrews & McIntyre (1978a, b). In an elegant and enlightening paper, Holm (1996)
formulated the ‘ideal’ (inviscid) C-L equations as a Hamiltonian system. Among other
results, Holm showed that the time-averaged Kelvin’s circulation theorem is satisfied
by the C-L equations and noted that the correct form of the C-L equations can be
derived by requiring that the time-averaged Kelvin’s circulation theorem be satisfied.
Holm also showed that the ideal C-L equations have the same Hamiltonian structure
as the Euler equations. It appears, from these results, and that of Craik (1977), that
the wave field can be treated within the same conceptual framework as a turbulent
flow, i.e. as a mean flow (the Stokes drift) and a fluctuating component (the random
wave field).

In the last decade, substantial insight into LC has been gained from large-eddy
simulations (LES). LES performed up to date have focused on the surface mixed layer
over deep water, far from the bottom boundary layer. Early simulations involving the
C-L equations included those of Skyllingstad & Denbo (1995), McWilliams, Sullivan &



66 A. E. Tejada-Mart́ınez and C. E. Grosch

Rigid-lid surface

No-slip stationary bottom

Mean turbulent profile

Laminar profile

x3, u3
δ

δ

x2, u2

τs

¯
¯

x1, u1¯

Figure 1. Sketch of shear flow driven by surface stress, τs , due to wind. The total depth is H
and δ = H/2. , mean velocity profile in a turbulent flow; , linear velocity profile in a
laminar flow.

Moeng (1997) and Skyllingstad et al. (1999). In brief, these studies found that
under typical oceanic conditions LC lead to (i) homogenized mean velocity and
momentum flux profiles, (ii) enhanced turbulent vertical velocity fluctuations and
(iii) increased dissipation and entrainment buoyancy flux. Additionally, (iv) wave
forcing (creating LC) dominated near surface turbulence, (v) dissipation rates were in
good agreement with observations, (vi) the coherent downwind structures were more
randomly distributed than those of prior simplified models and (vii) LC played a
bigger role than convection in generating mixing. Noh, Min & Raasch (2004) and
Sullivan, McWilliams & Melville (2005) added a stochastic surface force to the C-L
equations in order to account for the effects of wave breaking. The latter group (in
contrast to the former) found that wave breaking combined with LC can be highly
effective in mixing and entrainment in the surface layer of the upper ocean. Finally, Li,
Garrett & Skyllingstad (2005) performed a large number (of order 100) of simulations
of shear flow in deep water and found differences in the turbulence structure between
convection-dominated, shear-dominated and Langmuir-dominated turbulence. They
found that mixed-layer turbulence driven by wind stress is much less important than
Langmuir turbulence in typical oceanic flow except in very fetch-limited wave fields.

The observations of LSC in Gargett et al. 2004 and Part 1 were made under flow
conditions very different from those of previous observations. In the observations in
Part 1, the wavelength of the most dominant wave was approximately six times greater
than the depth, corresponding to intermediate-depth waves (hereinafter intermediate
waves) and leading to strong interaction of LC with the bottom boundary layer.
In order to understand the equilibrium dynamics of LSC generated by intermediate
waves, an LES approximating the environmental conditions (such as wind stress
and wave field) observed by Gargett et al. (2004) and in Part 1 was carried out.
In this LES, the flow was sufficiently resolved, especially near the bottom and top
boundaries, to account directly for most of the interaction of LC with the bottom and
surface boundary layers. Only a direct numerical simulation (DNS) would be able to
account for all of the interaction. However, as previously noted, the C-L equations
are the result of time filtering and it is clear that a DNS with these equations would
not be resolving down to the Kolmogorov scales. The spatially low-pass-filtered C-L
equations were solved numerically inside a horizontally periodic domain in which
the flow was driven by a constant wind stress at the top surface and was made to
satisfy a no-slip boundary condition at the bottom wall (plate) (figure 1); no-normal
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flow was enforced at the top surface. Numerous simulations were performed varying
the forcing conditions in order to determine the sensitivity of the results to these
conditions. These studies showed the similarities (and differences) between Langmuir
turbulence and Couette-flow turbulence.

The previously described flow configuration without C-L forcing is a type of
Couette flow. Traditionally, turbulent Couette flow is simulated via two parallel no-
slip plates moving in opposite directions. Somewhat surprisingly, Couette turbulence
(for which the governing equations do not have the C-L force), exhibits some of
the characteristics of Langmuir turbulence. Lee & Kim (1991) performed numerous
simulations of turbulent Couette flow and showed the existence of streaks of high
(positive) and low (negative) streamwise velocity fluctuations on horizontal (cross-
stream/streamwise) planes. These large-scale streaks possess much greater length
scales than the classical wall streaks observed on near-wall horizontal planes of
turbulent Poiseuille flow. Visualization of the flow on cross-stream/vertical planes,
i.e. normal to the streamwise direction, showed the large-scale streaks appearing as
‘vortical’ cell patterns extending almost from top to bottom. Other numerical and
laboratory studies of turbulent Couette flow were those of Bech et al. (1995) and
Papavassiliou & Hanratty (1997). Bech et al. (1995) were able to verify the cross-
stream alternating high-speed/low-speed pattern of the Couette streaks. Through
direct numerical simulation, Papavassiliou & Hanratty (1997) provided insight into
the dynamics governing the cells and streaks. They found that the large-scale Couette
cells can receive energy from the small scale turbulence, contrary to the common
energy cascade notion in which the large scales always pass energy to the small
scales. They showed that far from the boundaries, in the core region, the Couette
structures are nearly inviscid and are not greatly affected by turbulent stresses or
viscous diffusion. Papavassiliou & Hanratty demonstrated that when the flow reaches
statistical equilibrium (i.e. stationarity) the mean streamwise vorticity (characterizing
the strength of the Couette cells) is nearly constant along mean flow streamlines.
Tsukahara & Kawamura (2004) demonstrated that the Couette streaks are not an
artefact of the limited dimensions (lengths) of the computational domain, as they were
able to show the existence of the cells over a wide range of dimensions. Furthermore,
they showed that in low-Reynolds-number turbulent Couette flows, the characteristic
cross-stream length scale of the Couette streaks does not depend on the Reynolds
number, but rather on the height of the domain.

The general features of turbulent Couette flow, i.e. the streaks and cells, are similar
to those of wind-driven turbulent shear flow with LC in the presence of bottom and
surface boundary layers. However, the equilibrium dynamics of turbulent Couette flow
are very different from those of the flow with LC. An extremely important diagnostic
showing the difference is the map of the invariants of the resolved Reynolds stress
anisotropy tensor (Lumley 1978; Pope 2000) as a function of distance from the
bottom. Hereinafter, the large-scale streaks in Couette turbulence are referred to as
Couette streaks in order to distinguish them from wall streaks and Langmuir streaks,
and the corresponding large-scale cells are referred to as Couette cells in order to
distinguish them from Langmuir supercells.

The structure of the rest of the paper is as follows. After a brief description of the
governing equations, the major differences in the equilibrium dynamics between wind-
driven turbulent shear flow in the presence of bottom and surface boundary layers
(i.e. wind-driven turbulent Couette flow) and the same flow with LC generated by the
Craik–Leibovich force under conditions representative of the observations in Part 1 are
highlighted. (Statistical equilibrium is described in Appendix C, immediately following
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equation (C 7).) This comparison will rely on flow visualizations and diagnostics
including mean velocity profiles, autocorrelations, invariants of the resolved Reynolds
stress anisotropy tensor and balances of the transport equations for the resolved
mean turbulent kinetic energy and the resolved Reynolds stress tensor. Remarks will
be made along the way comparing simulation results with the observations. The LC
in the observations in Part 1 were generated by intermediate waves. In addition to
investigating this case numerically, a case in which the LC were generated by shorter
waves as well as a third case in which the LC were generated by waves of greater
amplitude, are investigated. Finally, conclusions and suggestions for additional studies
will be given. The Appendixes will address effects of Reynolds number, domain size,
grid cell size and subgrid-scale closure. The Appendixes also include details of the
numerical method.

2. Governing equations
Constant-density flow is assumed because the LSC described in Part 1 were observed

in approximately neutrally stable water. The flow of interest (figure 1) is driven by a
constant surface stress. Periodicity is imposed in the horizontal (x1 and x2) directions
and a no-slip boundary condition is imposed at the bottom. Zero normal flow is
imposed at the surface. Periodicity in x1 and x2 implies that the flow is spatially
homogeneous over these directions. The governing equations and numerical method
(see Appendix E) will be described within the context of this flow configuration.

2.1. The spatially filtered Craik–Leibovich equations

Application of a homogeneous low-pass spatial filter to the non-dimensionalized C-L
equations leads to

∂ūi

∂xi

= 0, (2.1a)

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −∂Π̄

∂xi

+
1

Re

∂2ūi

∂x2
j

+
∂τij

∂xj

+
1

La2
t

εijkφ
s
j ω̄k, (2.1b)

where εijk is the totally antisymmetric third-rank tensor, an overbar denotes applica-
tion of the low-pass spatial filter and ūi and ω̄i are the ith components of the
non-dimensional space- and time-filtered velocity and vorticity, respectively, in the
Cartesian coordinate system (x1, x2, x3) depicted in figure 1. Recall that the C-L
equations govern the behaviour of time-filtered variables. Furthermore, the C-L
equations were spatially filtered, leading to the equations (2.1); hence, ūi and ω̄i

are referred to as the space- and time-filtered velocity and vorticity, respectively. The
non-dimensional, modified, space- and time-filtered pressure is defined as

Π̄ = p̄ + 1
2
Γ, (2.2)

where p̄ is the non-dimensional, space- and time-filtered pressure and

Γ =
1

La4
t

φs
i φ

s
i +

2

La2
t

ūiφ
s
i . (2.3)

The fourth (last) term on the right-hand side of (2.1b) is the non-dimensionalized C-L
vortex force defined as the Stokes drift velocity crossed with the filtered vorticity. The
non-dimensional Stokes drift velocity is defined by Phillips (1967) and LeBlond &
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Mysak (1978) as

φs
1 =

cosh(2κx3)

2 sinh2(κH )
, φs

2 = φs
3 = 0, (2.4)

where H is the water depth and κ is the dominant wavenumber of the filtered-out
surface gravity waves.

The characteristic flow velocity is taken as the friction velocity, uτ , where
uτ =(τs/ρo)

1/2, τs is the constant wind stress in the x1-direction applied at the top
surface (as depicted in figure 1) and ρo is the constant density. Non-dimensionalizing
the governing equations with characteristic flow velocity uτ and characteristic length
scale δ = H/2 gives rise to the turbulent Langmuir number, Lat = (uτ/us)

1/2, and the
Reynolds number Re = uτδ/ν (with ν the kinematic viscosity) appearing in (2.1). The
characteristic Stokes drift velocity is defined as us = ωκa2, where ω is the dominant
frequency, κ is the dominant wavenumber and a is the amplitude of the surface
gravity waves.

Expanding the C-L vortex force on the right-hand side of (2.1), it can be seen that it
is simply the Stokes drift velocity crossed with the filtered vorticity. The components
of the C-L force are (0, −ω̄3, ω̄2)φ

s
1/La2

t . Note that the C-L force does not contribute
to the x1-momentum equation because the Stokes drift velocity is zero in the x2 and
x3 directions.

An important difference between the equations used in previous LES of flows with
LC (such as those of McWilliams et al. 1997; Li et al. 2005; and others) and the
equations (2.1) is that in the latter the viscous stress term (inversely proportional to
Re) has been retained. The viscous stress term has been retained because the present
simulations partially resolve bottom and surface viscous boundary layers where this
term plays an important role in the governing dynamics. Previous simulations focused
on flows with LC within the surface mixed layer of the deep ocean far from the
bottom boundary layer, thus the viscous stress term could be neglected. Note that the
current simulations partially resolve bottom and surface viscous boundary layers as
they are LES and not DNS.

2.2. Subgrid-scale closure

The subgrid-scale (SGS) stress τij in (2.1), generated by spatial filtering the C-L
equations, is defined as

τij = ūi ūj − uiuj . (2.5)

The term uiuj gives rise to a closure problem and thus must be parameterized. The
deviatoric part of τij (i.e. τ d

ij ≡ τij − δij τkk/3) is parameterized using the dynamic
Smagorinsky closure and the dilatational part (i.e. δij τkk/3) is added to the modified
pressure, Π̄ . The Smagorinsky closure expresses the deviatoric part of the SGS stress as

τ d
ij = 2 (Cs∆̄)2|S̄|︸ ︷︷ ︸

Eddy viscosity

S̄ij , (2.6)

where ∆̄ is the width of the grid filter (i.e. the smallest characteristic length scale
resolved by the discretization), Cs is the Smagorinsky coefficient, S̄ij = (ūi,j + ūj,i)/2 is
the filtered strain-rate tensor, and |S̄| =(2S̄ij S̄ij )

1/2 is its norm. The model coefficient
is computed dynamically (Lilly 1992) as

(Cs∆̄)2 =
1

2

〈LijMij 〉
〈MklMkl〉

, (2.7)
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where

Lij = ũiuj − ũi ũj , (2.8)

and

Mij = |̃S̄|S̄ij − α2|˜̄S|˜̄Sij . (2.9)

An over-tilde, ·̃, denotes application of a homogeneous low-pass spatial test filter
in the x1 and x2 directions. Angle brackets in (2.7) denote averaging in x1 and x2

as a means of preventing instabilities due to potential negative values of the model
coefficient. Finally, α is a parameter referred to as the filter width ratio and often
approximated as the test filter width divided by the grid cell size, h. All of the
simulations described here were performed using the well-known box filter of width
2h (Pope 2000) approximated using the trapezoidal rule. The width of the resulting
discrete filter is

√
6h (Lund 1997), thus α =

√
6.

In Appendix C, a different closure is considered in order to verify that results are
not greatly sensitive to the subgrid-scale stress. The numerical method used to solve
the previously described governing equations is given in detail in Appendix E.

3. Results
In this section, the major differences in the equilibrium dynamics between a flow

with C-L vortex forcing and the corresponding flow without the C-L vortex forcing are
emphasized. Where possible, the LES results with C-L vortex forcing are compared
to the observations reported in Part 1.

3.1. Shear turbulence versus Langmuir turbulence

The following two simulations are compared: (i) shear flow driven by a surface wind
stress with C-L vortex forcing and (ii) shear flow driven by the same surface wind stress
without LC. Both flows were in the presence of bottom and surface boundary layers.
In both cases the constant surface wind stress was applied such that Re =395 based
on friction velocity as described earlier. Note that in these simulations, the Reynolds
number based on bulk velocity is Reb = 6800. Case (i) is characterized by Lat = 0.7
and λ= 6H , where λ is the dominant wavelength of surface waves and H is the water
depth. Note that κ = 2π/λ in (2.4). These values for Lat and λ are representative
of the coastal shelf shear flow with LSC observed in Part 1. Furthermore, λ=6H

corresponds to intermediate waves. Case (ii) is characterized by Lat = ∞, thus no
LC. Note that Re representative of the observations is much greater than that of the
present simulation (Re = 395). As shown in Appendix A, a simulation of flow with LC
at a lower Reynolds number (Re = 180) was performed without great changes in the
results, demonstrating that the flow with LC reaches Reynolds-number independence
at much lower values than the Reynolds numbers characteristic of the observations.

As was discussed in the previous section, earlier workers did not resolve the bottom
boundary layer in their LES of flows with LC, thus the viscous stress and consequently
the Reynolds number did not appear in their formulation. More specifically, the vis-
cous stress was assumed negligible compared to the subgrid-scale stress, a reasonable
assumption valid far from boundary layers. For those cases, in which molecular
viscosity does not play a dominant role in the flow dynamics, an alternative Reynolds
number may be computed based on the eddy or turbulent viscosity associated with
the subgrid-scale stress. For example, in the LES of McWilliams et al. (1997) the
mid-depth of the computational domain was 45 m, the friction velocity associated
with the wind stress was 6.1 × 10−3 m s−1 and the eddy viscosity is O(10−3) m2 s−1.
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Thus, the Reynolds number based on eddy viscosity was approximately 274.5, lower
than the Reynolds number in the current simulations at Re = 395.

The current wind-driven shear flow without C-L forcing in the presence of bottom
and surface boundary layers gives rise to the same turbulent structures found in Cou-
ette flow driven by oppositly moving parallel no-slip plates. Thus, following the direct
numerical simulations of turbulent Couette flow at about Re = 170 of Lee & Kim
(1991), the domain dimensions for both cases, (i) and (ii), were chosen as (L1/δ, L2/δ,

L3/δ) = (4π, 8π/3, 2). Here L1, L2 and L3 are the lengths of the domain in the x1-, x2-
and x3-direction, respectively, as sketched in figure 1. Note that the spanwise length of
the computational domain in both flows is L2 = 8πδ/3 = 4.19H where the water depth
is H = 2δ. This length falls within the range of values reported for the spanwise length
of one Langmuir cell (3H–6H ) in Part 1; thus, it was expected that one Langmuir
cell could be resolved in the flow with LC. In Appendix B, results are presented with
a computational domain of greater spanwise extent. The computational grid in flows
both with and without LC contained 96 points in x1, 96 points in x2 and 97 points
in x3 (96 × 96 × 97). The stretching parameter in the mapping function in (E 9) (in
Appendix E) was set to b = 0.973. This value of b was chosen so that the horizontal
plane of grid points closest to the bottom wall (top surface) was at a distance of 1 wall
unit (i.e. uτ∆x3/ν = 1, where ∆x3 is the distance in regular units) from the bottom wall
(top surface), well within the expected viscous sublayer near the bottom wall. The non-
dimensional time step was chosen as 0.001 for both cases in order to yield temporal
accuracy and not violate the well-known Courant, Friedrichs and Lewy condition.

3.1.1. Visualizations

To visualize the flow, it is convenient to represent the LES solution using the
classical Reynolds decomposition. Thus,

ūi = 〈ūi〉 + ū′
i , (3.1)

where 〈·〉 denotes averaging in time and over the horizontal directions (x1 and x2)
and ū′

i is the fluctuation of the resolved velocity. The decomposition in (3.1) can also
be used to compute the resolved Reynolds stresses as

〈ū′
i ū

′
j 〉 = 〈ūi ūj 〉 − 〈ūi〉〈ūj 〉, (3.2)

assuming the flow is in statistical equilibrium. Profiles of resolved Reynolds stresses
will be shown later.

Figure 2 shows colour maps of instantaneous downwind fluctuating velocity, ū′
1, on

the horizontal plane at mid-depth in the flows with and without LC. In both flows
there is at least one pair of high- and low-speed regions or streaks highly elongated in
the downwind (streamwise) direction (x1) and alternating in the crosswind (spanwise)
direction (x2). In the flow with no LC (figure 2b) there are two streaks with ū′

1 > 0
and two with ū′

1 < 0. The spanwise width of each streak is approximately equal to the
depth, H , in agreement with the Couette streaks originally found in the simulation of
Lee & Kim (1991). Animations reveal that when the C-L vortex force is turned on,
the streaks where ū′

1 > 0 merge, as the flow transitions from two pairs of streaks to
one pair. Figure 2(a) shows the one-pair structure characterizing the flow with LC.
The width of the streak with ū′

1 > 0 is approximately 3H and the width of the streak
with ū′

1 < 0 is approximately H .
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Figure 2. Colour maps of instantaneous ū′
1 on the horizontal (x1, x2)-plane at mid-depth

(x3 =H/2) in flows (a) with (b) and without LC at Re= 395. In flow with LC, Lat = 0.7 and
λ=6H . Fluctuations ū′

1 are normalized by the mean centreline streamwise velocity, Uc
1 .

A second decomposition of the LES solution can be taken as

ūi = 〈ūi〉 + 〈ū′
i〉tx1

+ ū′′
i︸ ︷︷ ︸

=ū′
i

, (3.3)

where 〈·〉tx1
denotes averaging in time and over the downwind (x1) direction and ū′

i

is obtained from (3.1). For simplicity, let v̄′
i(x2, x3) = 〈ū′

i〉tx1
. This partially averaged

fluctuation emphasizes flow structures which are coherent in the downwind direction;
it provides further information about the secondary flow structures (i.e. the streaks)
already observed in figure 2. Figures 3 and 4 show the crosswind/vertical structure
of this term in the flows with and without LC, respectively. Overall, both flows
exhibit positive and negative spanwise cell structures in each of the partially averaged
fluctuating velocity components; the flow with LC has a spanwise one-cell structure
while the flow without LC has a spanwise two-cell structure. As will be discussed
shortly, the one-cell structure in the flow with C-L forcing possesses all of the basic
characteristics of the Langmuir supercells (LSC) observed in Part 1; hence, this is,
indeed, a flow containing one LSC, as expected.

In the mean as defined by 〈·〉tx1
, the flow with LC has much stronger maxima and

minima in all fluctuating velocity components compared to the flow without LC:
extrema of v̄′

1, v̄′
3 and v̄′

2 are approximately 3, 2.5 and 10 times greater, respectively.
As seen in figure 3(a), the flow with LC is characterized by intensification of

positive v̄′
1 near the surface and near the bottom, consistent with the observations of

LSC in Part 1. Furthermore, the region of positive v̄′
1 exhibits a mushroom-shaped

pattern. In the case of the flow without LC, there is no near-bottom or near-surface
intensification as the magnitude of v̄′

1 is nearly uniform (either positive or negative)
in most of the water column.
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Figure 3. Colour maps of partially averaged fluctuating velocity components (normalized by
Uc

1 ) on the (x2, x3)-plane for flow with LC at Re= 395 (Lat = 0.7, λ= 6H ). (a) v̄′
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In both flows, a region of positive v̄′
1 coincides with a region of negative v̄′

3 and vice
versa. Regions of positive v̄′

3 are referred to as upwelling limbs and regions of negative
v̄′

3 are referred to as downwelling limbs. In the flow with LC, the ratio of the spanwise
length of the upwelling limb to the spanwise length of the downwelling limb (r) is
1.4 at mid-depth (x3 = H/2), which compares favourably with the 1.1 to 1.3 range
recorded in the observations of LSC in Part 1. The value of r is greater than unity
throughout most of the water column. Owing to conservation of mass, this results
in an downwelling limb with greater intensity (magnitude) of v̄′

3 than the upwelling
limb. Furthermore, the extremum of v̄′

3 in the downwelling limb occurs slightly above
mid-depth, in general agreement with the observations in Part 1. In the flow without
LC, r is approximately 1 throughout most of the water column, thus the magnitude
of v̄′

3 in the downwelling limbs is nearly constant through most of the water column
and is nearly the same as in the upwelling limbs.

As seen in figures 3(c) and 4(c), in both flows, a region of downwelling coincides
with a region of surface convergence and bottom divergence of v̄′

2. Finally, in the flow
with LC, extrema of v̄′

2 occur at the surface (consistent with observations discussed
in Part 1), in contrast to the flow without LC where extrema of v̄′

2 occur in the upper
third of the water column.

To summarize, in the mean (as defined by 〈·〉tx1
), the Craik–Leibovich force induces

two parallel torques, one in the downwind direction and the other in the opposite
direction, as sketched by Leibovich (1983). These torques generate counter-rotating
vortices aligned in the wind direction, as noted by Leibovich (1983). The torques induce
converging crosswind velocity fluctuations at the surface (seen in figure 3c) and thus
surface convergence of the flow. Owing to conservation of mass, this convergence
generates the downwelling region pictured in figure 3(b) in addition to the surface
intensification of downwind fluctuations in figure 3(a). In the lower portion of the
water column, again owing to conservation of mass, the downwelling region induces
diverging spanwise fluctuations (and thus divergence of the flow at the bottom) as
well as bottom intensification of downwind fluctuations.

3.1.2. Autocorrelations

Autocorrelation functions give further insight into the turbulent flow structures
previously visualized. The two-point one-time streamwise correlation function is
defined as

Rx
ij (∆x1, x3) =

〈ū′
i(t, x1, x2, x3)ū

′
j (t, x1 + ∆x1, x2, x3)〉tx2

〈ū′
i ū

′
j 〉 . (3.4)

Similarly, the spanwise correlation function is

R
y
ij (∆x2, x3) =

〈ū′
i(t, x1, x2, x3)ū

′
j (t, x1, x2 + ∆x2, x3)〉tx1

〈ū′
i ū

′
j 〉 , (3.5)

where 〈·〉txi
denotes averaging in time and over the xi-direction. Autocorrelations are

obtained by setting i = j in (3.4) and (3.5) and ignoring the usual convention of
summing over repeated indices.

Three sets of autocorrelation functions are shown in figures 5 to 7. The first
demonstrates the coherency of turbulent fluctuations near the top surface at a distance
of approximately 20.11 wall units (uτ∆x3/ν ≈ 20.11) below the surface, the second
at mid-depth and the third at approximately 20.11 wall units above the bottom
(i.e. within the buffer layer of the bottom wall boundary layer). Figure 5(a) reveals
the existence of streamwise structures in ū′

1 near the surface in the flows with and
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Figure 5. Autocorrelations near the top surface at a distance uτ∆x3/ν ≈ 20.11 away from the
surface in flows with and without LC; ∆x3 is the distance from the surface in units of δ = H/2.
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Figure 7. Autocorrelations near the bottom wall at a distance uτ∆x3/ν ≈ 20.11 away from
the wall in flows with and without LC; ∆x3 is the distance from the wall in units of δ = H/2.
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without LC. In the flow with LC, the near-surface intensification of v̄′
2 (figure 3c) is

mirrored in the slight decrease of Rx
22 to about less than 0.8 at large ∆x1 (figure 5b).

In contrast, in the flow without LC, Rx
22 decays to zero-consistent with the surface

attenuation of v̄′
2 (figure 7c). The spanwise autocorrelations in figure 5(d) reveal the

single-cell and two-cell crosswind structures in ū′
1 characterizing the flows with and

without LC, respectively, a feature shown previously in terms of v̄′
1. For the flow with

LC near the surface, figure 5(e) demonstrates that the single-cell structure present
in v̄′

2 is also present in ū′
2. This single-cell structure is highly coherent owing to

the surface intensification of ū′
2. However, this is not case for the flow without LC,

as the autocorrelation decays quickly to nearly zero, given that there is no surface
intensification of ū′

2. As expected, there is little evidence of any structure in ū′
3 near the

surface in both flows where ū′
3 ≈ 0 owing to the zero normal flow boundary condition

at the surface.
At mid-depth, the autocorrelations in figure 6(a) show the existence of the stream-

wise structure in ū′
1 for both flows, with and without LC. Furthermore, figure 6(d)

shows the single-cell and two-cell crosswind structures in ū′
1 characterizing the flows.

In the flow with LC, R
y

11 exhibits two modes. The higher mode corresponds to the
the mushroom-shaped pattern exhibited by the single-cell structure (figure 3a), while
the lower mode corresponds to the single cell structure itself. In figures 6(b) and 6(e),
autocorrelations Rx

22 and R
y

22 decay rapidly to zero for both flows because ū′
2 is nearly

zero at mid-depth, as expected from the colour maps of v̄′
2 in figures 3(c) and 4(c).

Figures 6(c) and 6(f ) show that the mid-depth downwind and crosswind structure of
ū′

3 is more coherent in the flow with LC than in the flow without. In other words, the
Couette streaks tend to meander more than the Langmuir streaks.
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Figure 8. Vertical variation of mean velocity normalized by Uc
1 in flows (a) with and (b)

without LC at Re =395. In flow with LC, Lat = 0.7 and λ= 6H . , 〈ū1〉/Uc
1 ; ,

〈ū1〉tx1
/Uc

1 in a downwelling limb; − · −, 〈ū1〉tx1
/Uc

1 in an upwelling limb.

The variation of the autocorrelations near the bottom (figure 7) is very similar to
that near the surface. The existence of a near-bottom intensification in ū′

1 similar to
that of v̄′

1 (figure 3a) is evident in the relatively high values of the autocorrelation
of ū′

1 for the flow with LC, shown in figure 7(a). Near-bottom intensification occurs
in ū′

2 as well. As in the two previous figures, the single-cell crosswind structure in
the flow with LC as compared to the double-cell structure in the flow without LC
is evident. The coherency characterizing fluctuations at 20.11 wall units above the
bottom boundary clearly suggest that the Langmuir cells extend at least into the
buffer layer just above the viscous sublayer.

In summary, the autocorrelations presented here provide further evidence for the
existence of and differences between Couette and Langmuir cells, both structures
persisting from the near bottom to the near surface of the water column. Furthermore,
results confirm the existence of Couette cells at Re =395. Previously, Couette cells
had been found at Re= 170 and lower.

3.1.3. Mean velocity

Figures 8 and 9 show mean streamwise velocity for the flows with and without
LC. In both cases, given that the wind stress driving the flow in the x1-direction
is constant, the slope of the mean streamwise velocity 〈ū1〉 at the bottom wall is
within numerical error (i.e. 1 %) of the value at the top surface, as expected owing
to conservation of downwind momentum. This can be seen in the solid lines in
figure 8 depicting 〈ū1〉 in both flows. Furthermore, in both flows the mean spanwise
velocity 〈ū2〉 and the mean vertical velocity 〈ū3〉 (not shown) are nearly zero. A major
difference between the two flows occurs in 〈ū1〉. In the flow with LC, the LC serve to
homogenize 〈ū1〉 throughout most of the water column. This behaviour can be seen
in figure 8(a) where 〈ū1〉 is roughly constant in the region below mid-depth, resulting
in almost no vertical mean shear. In the upper portion of the water column, the slope
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Figure 9. Spanwise variation of mean velocity normalized by Uc
1 in flows (a) with and (b)

without LC. In both flows, Re =395 and in flow with LC, Lat = 0.7 and λ= 6H . ,
〈ū1〉tx1

/Uc
1 at a distance uτ∆x3/ν ≈ 67 away from the top surface; , 〈ū1〉tx1

/Uc
1 at

mid-depth; − · −, 〈ū1〉tx1
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1 at a distance uτ∆x3/ν ≈ 67 away from the bottom wall.

of 〈ū1〉 becomes slightly negative, resulting in slightly negative mean vertical shear.
In the flow without LC, 〈ū1〉 has non-zero, positive slope throughout the entire water
column. The homogenizing action of the LC serves to decrease the mean streamwise
bulk velocity, Ub, defined as the depth average of 〈ū1〉. As a result, the skin friction
coefficient at the bottom increases by about 20 %. The skin friction coefficient may
be defined in terms of Ub and the shear bottom stress τw , as Cf = 2τw/ρU 2

b . In the
flow with LC, Cf = 0.006, whereas in the flow without LC, Cf =0.005.

Next, the effect of the downwelling and upwelling limbs on the streamwise mean
velocity are explored by analysing profiles of 〈ū1〉tx1

. In the flow with LC, in the
downwelling limb, the boundary layer exhibited by 〈ū1〉tx1

is much thinner than in
the upwelling limb. In the lower portion of the water column excluding the near-wall
region, 〈ū1〉tx1

in the downelling limb is better mixed than in the upwelling limb.
In the upper portion of the water column excluding the near-surface region, in the
downwelling limb, 〈ū1〉tx1

possesses positive slope, whereas in the upwelling limb
its slope becomes negative. Thus, the downwelling limb plays an important role in
the homogenization of 〈ū1〉, especially in the lower portion of the water column.
The upwelling limb contributes mostly to the negative slope characterizing 〈ū1〉 in the
upper portion of the water column.

In the flow without LC, the effects of the downwelling and upwelling limbs on 〈ū1〉
approximately cancel each other out throughout the entire water column (figure 8b).

Figure 9 shows the spanwise variation of 〈ū1〉tx1
near the surface, at mid-depth

and near the bottom of the water column in both flows. The near surface and near
bottom intensification of positive v̄′

1 lead to downwind velocity ‘jets’ with different
characteristics throughout the water column, as demonstrated by 〈ū1〉tx1

in figure 9(a).
In the lower portion of the water column, the jet spreads over a wider spanwise length
than in the upper portion of the water column; at mid-depth, the spread is widest. In
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Figure 10. Profiles of resolved Reynolds stresses for flow with LC (Lat = 0.7, λ= 6H ) at
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2ū
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Figure 11. Profiles of resolved Reynolds stresses for flow without LC at Re= 395. (a) Normal
stresses. (b) Shear stresses. Symbols as in figure 10. For visual clarity, every third point of the
discrete profiles is plotted.

the flow without LC, the spread of the jets caused by regions of positive v̄′
1 is uniform

throughout most of the water column.

3.1.4. Resolved Reynolds stresses

Figures 10(a) and 11(a) show normalized resolved normal Reynolds stress com-
ponents for the flows with and without LC, respectively. There are several dis-
tinguishing differences between the two cases. First, in the lower portion of the water
column, the LC case possesses larger values of 〈ū′

1ū
′
1〉 and 〈ū′

2ū
′
2〉. In the no LC

case, ordering of components is 〈ū′
1ū

′
1〉 > 〈ū′

2ū
′
2〉 > 〈ū′

3ū
′
3〉 for the entire water column.
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In the LC case, this ordering changes, as in the lower part of the water column
〈ū′

1ū
′
1〉 > 〈ū′

2ū
′
2〉 > 〈ū′

3ū
′
3〉 while in the middle 〈ū′

1ū
′
1〉 > 〈ū′

3ū
′
3〉 > 〈ū′

2ū
′
2〉. Towards the

upper part of the water column the ordering changes to 〈ū′
2ū

′
2〉 > 〈ū′

1ū
′
1〉 > 〈ū′

3ū
′
3〉 and

at the surface it settles back to 〈ū′
1ū

′
1〉 > 〈ū′

2ū
′
2〉 > 〈ū′

3ū
′
3〉.

Throughout most of the lower half of the water column, the flow with LC possesses
larger values of 〈ū′

1ū
′
1〉 than the flow without LC. The opposite occurs in the upper

half of the water column. For the most part, these differences between the flows can be
traced to the production of 〈ū′

1ū
′
1〉 by mean shear. Although production by mean shear

is proportional to the mean vertical shear as well as to 〈ū′
1ū

′
3〉, the former is the domin-

ant factor. Furthermore, although the C-L force does not directly affect the production
of 〈ū′

1ū
′
1〉 (as will be shown later), it affects production indirectly through homogen-

ization of mean downwind velocity. In the flow with LC, the LC tend to homogenize
the mean downwind velocity giving rise to a lower mean vertical shear throughout
the upper 90 % of the water column compared to the flow without LC. Consequently,
production rates of 〈ū′

1ū
′
1〉 are lower in the upper half of the water column. In the

lower 10 % of the water column of the flow with LC, the mean vertical shear is greater
than in the flow without LC, thus leading to higher production rates near the bottom.

Differences between the two flows in 〈ū′
2ū

′
2〉 and 〈ū′

3ū
′
3〉 can be directly attributed

to the C-L vortex force, as in the flow with LC, the C-L force directly affects the
production rates of these stress components. For example, as will be shown later,
near the surface, the C-L force acts as the main source of 〈ū′

2ū
′
2〉, leading to higher

values in the flow with LC than in the flow without LC. Near the surface in the flow
without LC, pressure strain redistribution acts as the main source of 〈ū′

2ū
′
2〉, but at

much lower rates than the C-L force in the flow with LC.
Figures 10(b) and 11(b) show normalized resolved shear Reynolds stress components

for the flow with and without LC, respectively. 〈ū′
1ū

′
3〉 components for both cases are

close to each other in magnitude throughout most of the water column; for the LC
case, 〈ū′

1ū
′
3〉 attains slightly greater values, especially near the middle of the water

column. The normalized magnitude of 〈ū′
1ū

′
3〉 in both cases is in agreement with that

recorded in the field observations. Additionally, for both cases, 〈ū′
2ū

′
3〉 is nearly zero

throughout the entire water column. For the flow without LC, this also occurs with
〈ū′

1ū
′
2〉. In flow with LC, the C-L vortex force induces slight variations in 〈ū′

1ū
′
2〉 near

the bottom and near the surface. It is important that the data recorded in the field
observations exhibit a non-zero 〈ū′

1ū
′
2〉 component, presumably owing to a non-zero

mean velocity in x2, 〈u2〉 (see Part 1). This is in contrast to the current simulations
for which 〈ū2〉 is nearly zero.

It is of interest to examine how much the Couette and Langmuir cells contribute
to the energetics. Using the Reynolds decomposition in (3.1) and assuming that the
flow is stationary, the resolved turbulent kinetic energy is expressed as

q̄ ≡ 1
2
〈ū′

i ū
′
i〉 = 1

2
(〈ūi ūi〉 − 〈ūi〉〈ūi〉). (3.6)

Furthermore, the resolved turbulent kinetic energy may be re-expressed in terms of
the decomposition in (3.3) as

q̄ = 1
2
(〈ū′′

i ū
′′
i 〉 + 〈v̄′

i v̄
′
i〉) + 〈v̄′

i ū
′′
i 〉. (3.7)

As seen through the visualizations shown earlier, v̄′
i is the part of the resolved velocity

fluctuations associated with Langmuir and Couette cells. Figure 12 sheds light on how
important the Langmuir and Couette cells are on the resolved turbulent kinetic energy.
Here, it can be seen that the contribution to turbulent kinetic energy (TKE) from the
Langmuir cells (i.e. 〈v̄′

i v̄
′
i〉/2) in the flow with LC is much greater than the contribution
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Figure 12. Profiles of resolved turbulent kinetic energy (TKE) and its contribution from
secondary flow associated with (a) Langmuir cells in flow with LC and (b) Couette cells in
flow without LC. Both flows are at Re= 395. In flow with LC, Lat = 0.7 and λ= 6H . �, resolved
TKE (q̄); ×, contribution to resolved TKE from fluctuations associated with Langmuir cells
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Figure 13. Lumley triangle for flows (a) with and (b) without LC at Re= 395. In flow with
LC, Lat = 0.7 and λ= 6H . , x3/H ∈ (0, 1/3]; +, x3/H ∈ (1/3, 2/3]; �, x3/H ∈ (2/3, 1]. The
solid indicated by the arrow denotes the map at the first point off the bottom wall.

to TKE from the Couette cells in the flow without LC. Throughout the upper half of
the water column, the total resolved TKE is about the same for both cases. However,
in the lower portion of the water column, the resolved TKE in the flow with LC
peaks at a value about twice as large as that in the flow without LC. In addition, the
portion of the resolved TKE due to the cells is only 15 % to 40 % of the total for the
flow without LC whereas it is 50 % to 80 % of the total for the flow with LC.

Figure 13 shows maps of the Lumley invariants (Pope 2000) for the flows with
and without LC. The Lumley invariant map is helpful in understanding the state of
anisotropy of the resolved Reynolds stresses. The map is built from the second and
third invariants of the anisotropy tensor bij = 〈u′

iu
′
j 〉/2q̄ − δij /3, where the resolved

turbulent kinetic energy, q̄ , is defined in (3.6). The second and third invariants are
II = bijbji and III= bijbjkbki; the first invariant is I = trace{bij } =0. In figure 13, the
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quantity II1/2 serves as a measure of the magnitude of the anisotropy, while the
location of the coordinate (II1/2, III1/3) serves as a measure of the shape of the aniso-
tropy and thus the state of the resolved turbulence. All realizable states of fluctuating
motion are constrained to lie within the triangular region shown in the figure. The
linear sides of the Lumley triangle emanating from the origin represent axisymmetric
turbulence; the origin represents three-dimensional isotropic turbulence. The region
of the triangle in which III > 0 represents turbulence for which the Reynolds stress
ellipsoid (see Pope 2000) is a prolate spheroid with two-eigenvalues of the Reynolds
stress tensor smaller than the third, hereinafter referred to as the cigar-shaped state.
The region in which III < 0 represents turbulence for which the Reynolds stress
ellipsoid is an oblate spheroid with two eigenvalues larger than the third, hereinafter
referred to as the pancake-shaped state. The upper left-hand side vertex of the triangle
corresponds to two-component isotropic turbulence, while the upper right-hand side
vertex corresponds to one-component turbulence.

Figure 13 shows the trajectories of the Lumley invariant maps varying from
x3/H =0 (bottom wall) to x3/H = 1 (top surface) for the flows with and without
LC. For both flows, the fluctuating motion is two-component (near the right-hand
side of the top bounding curve of the Lumley triangle) very close to the bottom
wall because 〈ū′

3ū
′
3〉 is much smaller than the other two normal Reynolds stress

components. In the case of the flow without LC, the fluctuating motion moves close
to a cigar-shaped axisymmetric state (near the right-hand-side edge of the triangle)
as the distance away from the bottom wall increases. The reason for this behaviour is
that 〈ū′

1ū
′
1〉 is larger than 〈ū′

2ū
′
2〉 ≈ 〈ū′

3ū
′
3〉, especially in the middle region of the water

column. In the upper-half region of the water column, the fluctuating motion moves
back towards the two-component state (near the right-hand side of the top bounding
curve of the triangle).

The trajectory of the invariant map exhibited by the flow with no LC is characteristic
of shear-dominated turbulence. LC tends to decrease mean shear thus a different
behaviour is expected for the flow with LC. For the case with LC, as distance from
the wall increases, the turbulence moves towards a pancake-shape (two-component)
state as the trajectory of the map goes into the interior of the triangle towards
the left-hand-side edge. The reason for this behaviour is that 〈ū′

1ū
′
1〉 and 〈ū′

2ū
′
2〉 are

much greater than 〈ū′
3ū

′
3〉 throughout most of the bottom third portion of the water

column. This is no longer true in the region 0.35 < x3/H < 0.45 as the ordering
〈ū′

1ū
′
1〉 > 〈ū′

3ū
′
3〉 ≈ 〈ū′

2ū
′
2〉 holds and the turbulence shifts back to an axisymmetric

cigar-shaped state. In the upper-half of the water column, as distance to the top
surface decreases, the turbulence moves back to the pancake-shaped state. At the
surface, the turbulence assumes an approximately two-component isotropic state (the
upper left-hand-side vertex of the triangle) because 〈ū′

1ū
′
1〉 ≈ 〈ū′

2ū
′
2〉 and 〈ū′

3ū
′
3〉 =0.

The trajectory of the Lumley invariant map in the bottom third of the water column
for the flow with LC (figure 13a) closely resembles the shape of the map based on data
from the field observations in Part 1. Furthermore, it highlights the vast difference in
turbulent motion between the flows with and without LC.

3.2. Balances of budgets of resolved turbulent kinetic energy and Reynolds stresses

Next, balances of resolved mean turbulent kinetic energy (TKE) and resolved
Reynolds stress budgets in the previously discussed flows with and without LC
at Re= 395 are studied under statistical equilibrium. Transport equations for TKE
and Reynolds stresses are given in Appendix D. Under statistical equilibrium, the
terms on the right-hand side of each of these equations sum to zero. In addition to
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Figure 14. (a, b) Near-top surface and (c, d) near-bottom wall budgets of resolved turbulent
kinetic energy in flows with and without LC (i.e. LC flow and no LC flow) at Re= 395. In
flow with LC, λ= 6H and Lat = 0.7. Terms are normalized by viscous scales (Pope 2000) and
distances are expressed in wall units. In (a) and (b), location of top surface is at x+

3 = 0. In

(c) and (d), location of bottom wall is at x+
3 = 0. , turbulent transport; , pressure

transport; −·−, SGS transport; �, viscous diffusion; �, viscous dissipation; �, SGS dissipation;
×, production by mean shear; +, C-L (Langmuir) forcing; �, sum of all terms.

describing the transfer of energy between TKE components in Langmuir turbulence
and summarizing the dominant budgets of TKE and 1–3 component of resolved
Reynolds stress, this study provides a potential guideline for parameterizing the TKE
and Reynolds stresses in general circulation models of shallow coastal regions and
estuaries. Currently, none of the parameterizations often used in these models take
into account the effects of Langmuir turbulence.

Figures 14(a, b) contrasts budgets of TKE in the flows with and without LC near
the surface. In the flow with LC, the C-L vortex force acts as a source of TKE,
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reaching a maximum at the top surface and is mostly balanced by a negative pressure
transport. In this case, the pressure in the pressure transport term is affected through
the C-L forcing as seen in (2.2). In the case with no LC, pressure transport is
nearly zero given that there is no C-L forcing. Furthermore, production of TKE by
mean shear decays faster with distance away from the surface in the flow with LC
compared to that in the flow without LC. This is attributable to homogenization of
mean streamwise velocity by LC. The remainder of the terms in the two cases show
only slight differences.

Near the bottom, the transport of TKE follows similar dynamics in the two cases,
as depicted by figures 14(c) and 14(d). The main difference is the presence of the C-L
vortex force acting as a sink in the flow with LC. This sink is partially balanced by
pressure transport. In the flow without LC (figure 14c), the C-L vortex force is zero
and thus the pressure transport is practically zero. At the wall, in both cases, viscous
diffusion serves to balance viscous dissipation.

Numerous differences occur between the flows with and without LC in terms of
the dynamics governing the transport of each TKE component, i.e. 〈ū′

1ū
′
1〉, 〈ū′

2ū
′
2〉

and 〈ū′
3ū

′
3〉. The discussion below focuses only on differences involving the transfer of

energy between these components as the rest of the differences are too numerous to
detail.

As was shown earlier, the C-L forcing term is zero for the x1-momentum equation,
thus it is also zero in the transport equation for 〈ū′

1ū
′
1〉. Consequently, there are

few differences between the flows with and without LC in the near-surface and
near-bottom wall budgets of 〈ū′

1ū
′
1〉 (figures 15a, d and 16a, d).

In the balance of TKE (equations (D1)–(D2), Appendix D), pressure appears only
as a transport term. However, in the Reynolds stress transport equations (equations
(D4)–(D5)), pressure plays a dual role, appearing as a transport term as well as a
redistribution term, the latter traditionally referred to as pressure–strain redistribution.
As noted by Pope (2000), pressure–strain redistribution serves to redistribute energy
among the three components of TKE.

The near-surface roles of pressure–strain redistribution are drastically different in
the flows with and without LC, as expected owing to the presence of the C-L vortex
force as well as the modification of the pressure by the C-L forcing mechanism (see
equation (2.2) in the flow with LC. As can be seen in figures 15(a) and 15(d), in the
near-surface region of both flows, mean shear is the main source of 〈ū′

1ū
′
1〉 energy. In

the flow without LC, this energy is partially transferred to 〈ū′
2ū

′
2〉 via pressure–strain

redistribution (figure 15b). In the flow with LC, such a transfer does not occur, as C-L
Langmuir forcing acts as the primary source of 〈ū′

2ū
′
2〉 energy, while pressure–strain

redistribution transfers most of this energy to 〈ū′
3ū

′
3〉 (figure 16e).

The dramatic difference in pressure–strain redistribution between the flows with
and without LC can be further seen in the budgets of 〈ū′

3ū
′
3〉 in figures 15(c) and

15(f ). In the near surface region in the flow without LC, pressure–strain redistribution
alternates from source to sink to source again at the surface, while primarily balancing
pressure transport. Such a characteristic is not present in the flow with LC, as pressure–
strain redistribution remains a source throughout the entire near-surface region, while
once again primarily balancing pressure transport.

Similar to the near-surface behaviour of both flows, mean shear is the primary
contributor to 〈ū′

1ū
′
1〉 energy in the near-bottom wall region (figure 16a, d).

Redistribution of this energy follows different dynamics in the two flows. For example
(figure 16a–c), within the near-bottom buffer layer, (10 < x+

3 < 50), of the flow without
LC, pressure–strain redistribution extracts energy from 〈ū′

1ū
′
1〉 and redistributes it to
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Figure 15. Near-top-surface budgets of TKE components in flows with (d–f ) and without
(a–c) LC (i.e. LC flow and no LC flow) at Re= 395. In flow with LC, λ= 6H and Lat = 0.7. (a, d)
〈ū′

1, ū
′
1〉, (b, e) 〈ū′

2, ū
′
2〉, (c, f ) 〈ū′

3ū
′
3〉. Location of top surface is at x+

3 =0. *, pressure–strain
redistribution; the rest of the symbols are as in figure 14. Please note that in some instances
pressure–strain redistribution (denoted by ‘*’) cannot be clearly detected as it overlaps SGS
dissipation (denoted by ‘�’). Also note the difference in scale of (b) and (c) as compared to
the others.

〈ū′
2ū

′
2〉 and 〈ū′

3ū
′
3〉. In contrast, in the flow with LC (figure 16d–f ), pressure–strain

redistribution extracts energy from 〈ū′
1ū

′
1〉 and 〈ū′

3ū
′
3〉 while transferring it to 〈ū′

2ū
′
2〉

throughout the near-wall viscous sublayer (x+
3 < 10) and buffer-layer regions.

Further differences in the near-bottom behaviour of pressure–strain redistribution
between the flows with and without LC can be seen in the budgets of 〈ū′

3ū
′
3〉

(figure 16c, f ). In the flow without LC, within the buffer layer, pressure–strain
redistribution appears as a source, while in the viscous sublayer, it appears as a sink.
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Figure 16. Near-bottom wall budgets of TKE components in flows with (d–f ) and without
(a–c) LC (i.e. LC flow and no LC flow) at Re= 395. In flow with LC, λ= 6H and Lat = 0.7. (a, d)
〈ū′

1, ū
′
1〉, (b, e) 〈ū′

2, ū
′
2〉, (c, f ) 〈ū′

3ū
′
3〉. Location of bottom wall is at x+

3 = 0. *, pressure–strain
redistribution; the rest of the symbols as in figure 14. Please note differences in scale in the
plots.

In both instances, pressure–strain redistribution serves to partially balance pressure
transport. This characteristic of pressure–strain redistribution alternating from a
source of 〈ū′

3ū
′
3〉 in the buffer layer to a sink of 〈ū′

3ū
′
3〉 in the viscous sublayer can

be seen in the budgets of the turbulent channel flow simulations of Moser, Kim &
Mansour (1999). Such a characteristic is not present in the flow with LC, as pressure–
strain redistribution remains a sink throughout the entire near-bottom wall region,
while once again primarily balancing pressure transport.

Near the surface in the flow with LC (figure 17b), the dominant terms in the balance
of −〈ū′

1ū
′
3〉 are pressure transport (positive), C-L forcing (negative) and pressure–strain
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Figure 17. (a, b) Near-top surface and (c, d) near-bottom wall budgets of −〈ū′
1ū

′
3〉 in flows

with and without LC (i.e. LC flow and no LC flow) at Re =395. In flow with LC, λ= 6H and
Lat = 0.7. Terms are normalized by viscous scales (Pope 2000) and distances are expressed in
wall units. In (a) and (b), location of top surface is at x+

3 = 0. In (c) and (d) location of bottom

wall is at x+
3 = 0. Note the change in scale from (a) to (b) and (c) to (d).

redistribution (negative). Note that the values of C-L forcing and pressure–strain
redistribution are nearly identical, causing the symbols to overlap. In contrast, in the
flow without LC (figure 17a), production by mean shear, which is positive, is balanced
by the sum of pressure transport and pressure–strain redistribution, both of which
are negative. It must be noted that in the case with LC, production by mean shear is
not zero, but is of the same order of magnitude as in the case without LC; thus, it is
very small compared to the dominant terms. Note the change of scale in figures 17(a)
and 17(b).
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Figure 18. Summary of dominant terms in the transport equations for resolved Reynolds
stresses in the flow with LC at Re= 395 (λ= 6H , Lat = 0.7). (a) Near-surface balances.
(b) Near-bottom balances.

In the case with LC, near the wall (figure 17d), pressure transport serves to balance
C-L forcing and pressure–strain redistribution. In this case, production by mean
shear is negligible as most of the source is provided by turbulent transport. At the
wall, in the case with no LC (figure 17c) pressure transport balances pressure–strain
redistribution, as the C-L vortex force is zero. For the region x

+

3 > 5, production by
mean shear plays a bigger role than pressure transport as they both serve to balance
pressure–strain redistribution. The dominant terms are production by mean shear,
pressure transport turbulent transport and pressure–strain redistribution.

It is remarkable that the near-wall and near-surface dominant budget terms
of −〈ū′

1ū
′
3〉 in the flow without LC (i.e. pressure transport and pressure–strain

redistribution) are an order of magnitude smaller than the corresponding near-wall
dominant budget terms in the flow with LC. This disparity further demonstrates the
strong impact that LC generated by intermediate waves can have on the dynamics of
the turbulence in the bottom boundary layer.

Figure 18 summarizes the previously described dominant balances in the transport
equations for resolved Reynolds stresses. In this figure, an arrow pointing away from
a term means that term is positive in the balance and vice versa. For example, in the
near-surface balance of 〈ū′

1ū
′
1〉, mean shear production is positive and is balanced by

two negative terms, namely viscous dissipation and turbulent transport.

3.3. Effects of λ and Lat on Langmuir turbulence

Next, the turbulence structure in three flows with LC are contrasted. In the first flow,
the LC were generated by intermediate waves, similarly to the flow in the previous
subsection. A second flow is investigated in which the LC were generated by shorter
waves (corresponding to a smaller value of λ) in addition to a third flow in which



Langmuir turbulence in shallow water. Part 2 89

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1.0

x3—
H
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Figure 19. Profiles of mean velocity (normalized by Uc
1 ) for flows with LC at Re= 180. ,

flow with λ= 6H and Lat =0.7; , flow with λ= (4/3)H and Lat = 0.7; − · −, flow with
λ= 6H and Lat = 0.4.

the LC were generated by waves of greater amplitude (corresponding to a smaller
value of Lat ). The three flows are characterized as follows. In the first flow, λ=6H

and Lat = 0.7. In the second flow, λ= (4/3)H and Lat = 0.7, and in the third flow,
λ= 6H and Lat = 0.4. As discussed in Appendix A, preliminary tests did not show
major differences between flows with LC at Re =180 and Re =395, both with λ=6H

and Lat = 0.7. Resolution requirements for the flow at Re = 180 are not as high as
they are for the flow at Re= 395. Thus, in an effort to save computational time, all
flows presented in this subsection were simulated at Re = 180. For the three cases
studied here, the computational domain was (L1/δ, L2/δ, L3/δ) = (4π, 8π/3, 2) with a
(32 × 64 × 97) grid and grid stretching parameter b = 0.923.

Recall that the C-L vortex force in the governing equations is inversely proportional
to La2

t , thus a decrease in Lat leads to an increase in the overall magnitude of the C-L
force throughout the water column. Furthermore, the magnitude of the C-L force
is at its maximum at the top surface and decreases with depth. The decay rate is
inversely proportional to λ, thus higher values of λ lead to a higher overall magnitude
of the C-L force.

Mean streamwise velocity profiles for the three flows with LC are compared in
figure 19. As expected, the LC in the flow with λ= (4/3)H do not homogenize
the mean velocity as far down in the water column as in the flows with λ= 6H .
Consequently, the bottom boundary layer is thicker in the flow with λ= (4/3)H . In
the lower half of the water column, above the bottom boundary layer, the velocity
profiles for the flows with λ= 6H look nearly identical, however, the flow with
Lat =0.4 does possess lower values of mean vertical shear owing to the homogenizing
action of the stronger LC. Most of the impact due to different Lat is seen near the
surface where the mean velocity in the flow with Lat = 0.4 and λ= 6H is characterized
by a slightly more negative gradient than the mean velocity in the flow with Lat = 0.7
and λ= 6H .

The homogenizing action of the LC in the flow with Lat = 0.4 extends closer to the
top surface, thus the surface boundary layer in this flow is thinner.

Figures 20(a) and 20(b) show resolved normal Reynolds stress components in the
flows with λ=(4/3)H and λ=6H , respectively. In both flows, Lat = 0.7. In terms of
these stress components, both flows behave similarly in the near-surface region of the
water column. In the lower portion of the water column, the flow with λ= (4/3)H
exhibits a behaviour closer to that of shear-dominated turbulence, for which 〈ū′

1ū
′
1〉

is much greater than 〈ū′
2ū

′
2〉 and 〈ū′

3ū
′
3〉. This is clearly seen in figure 21(a), in terms

of the Lumley invariants.
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Figure 20. Profiles of resolved normal Reynolds stresses for flows with LC at Re= 180. (a)
Flow with λ= (4/3)H and Lat =0.7. (b) Flow with λ= 6H and Lat = 0.7. (c) Flow with λ= 6H
and Lat = 0.4. Symbols are as in figure 10(a). For clarity, every third point of the discrete
profiles is plotted.
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Figure 21. Lumley invariant maps for flows with LC at Re= 180. Symbols are as in figure 13.
(a) Flow with λ=(4/3)H and Lat = 0.7; (b) λ= 6H and Lat = 0.7; (c) λ= 6H and Lat = 0.4.

Figures 20(b) and 20(c) show resolved normal Reynolds stress components in the
flows with Lat = 0.7 and Lat = 0.4, respectively. In both flows, λ= 6H . Throughout
the entire water column, the flow with Lat = 0.4 possesses smaller values of 〈ū′

1ū
′
1〉

than the flow with Lat = 0.7. This is due to the weaker mean vertical shear in the
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flow with Lat = 0.4 occurring throughout most of the water column. Furthermore,
lowering Lat from 0.7 to 0.4, thereby increasing the strength of Langmuir forcing
leads to higher values of 〈ū′

2ū
′
2〉 and 〈ū′

3ū
′
3〉 in the upper half of the water column. This

is expected, as an increase in Langmuir forcing leads to an increase in the production
of these two components, which may be confirmed via the near-surface budget terms
in the transport equations for resolved TKE components in figure 15.

Lowering the turbulent Langmuir number from Lat = 0.7 to Lat = 0.4 with fixed
wavelength at λ=6H , leads to great changes in the anisotropy of the resolved
Reynolds stresses (figure 20b, c). In the flow with Lat = 0.7, 〈ū′

1ū
′
1〉 is the largest of

the normal stresses, except for the region 0.75 <x3/H < 0.97, where 〈ū′
2ū

′
2〉 is greater.

In contrast, in the flow with Lat = 0.4, 〈ū′
2ū

′
2〉 is the largest of the normal components

in the upper 25 % of the water column. Furthermore, 〈ū′
3ū

′
3〉 is the largest of the normal

components in the region 0.45 <x3/H < 0.7. Consequently, the Lumley invariant maps
for these two flows (figures 21b and 21c) behave differently, especially in the upper
third of the water column. Note that in the lower two-thirds of the water column,
the Lat = 0.7 and Lat = 0.4 simulations, both with λ= 6H , yield Lumley invariant
maps consistent with those of the observations of Part 1. Unfortunately, the upper
third of the water column was not accessible in the observations, thus a comparison
between simulations and observations is not possible for this portion of the water
column.

In summary, for a fixed turbulent Langmuir number, Lat , the longer the waves
generating LC, the stronger the impact of LC is on the structure of the turbulence
in the lower portion of the water column. For LC generated by relatively shorter
waves, the structure of the turbulence in the lower portion of the water column
is similar to that of classical shear turbulence. Such LC only affect the turbulence
structure in the upper portion of the water column. Furthermore, changing Lat

from 0.7 to 0.4 in the flow with LC generated by intermediate waves with λ=6H

leads to a re-ordering of the resolved normal Reynolds stress components and
thus a different turbulent structure, especially in the upper half of the water
column.

4. Discussion and conclusions
Numerous LES of LC in a wind-driven shear current in constant-density water with

a non-negligible bottom boundary layer (i.e. LC in shallow water) were performed.
Previous simulations of LC have been limited to deep water, where the bottom
boundary layer is unimportant. The flows with LC were governed by the space
and time filtered incompressible Navier–Stokes equations augmented by the C-L
vortex force, often referred to as the C-L equations. The C-L vortex force models
the interaction between the Stokes drift velocity, induced by the filtered-out surface
gravity waves, and the shear current, thereby giving rise to LC.

Results of a shear flow without LC and the same flow with LC, the latter driven
by wave- and wind-forcing conditions representative of the observations in Part 1,
demonstrated the strong impact that the Langmuir cells can have on the structure
of turbulent velocity fluctuations. The wind-driven shallow-water flow without LC
contained velocity fluctuations characterized by large-scale streaks highly elongated in
the downwind direction and alternating in sign in the crosswind direction. Such large-
scale streaks had been previously discovered by Lee & Kim (1991) and Papavassiliou
& Hanratty (1997) via direct numerical simulations of turbulent Couette flow. Forcing
wind-driven shallow-water flow with the C-L vortex force led to larger streaks with a
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characteristic crosswind length scale consistent with those recorded in the observations
of Langmuir supercells (LSC) in Part 1. Visualizations of this flow on a plane normal
to the wind direction, in addition to spanwise and crosswind autocorrelations of
velocity fluctuations at different depths, showed that the larger streaks generated by
the C-L force possessed a vertical structure also consistent with the observations of
LSC. These diagnostics showed that the C-L force led to the formation of surface-
intensified coherent streamwise vortices characterizing partially averaged velocity
fluctuations defined as v̄′

i(x2, x3) = 〈ū′
i〉tx1

. Surface intensification of the vortices was
evident through the surface-intensified converging v̄′

2. Crosswind regions of positive
(negative) v̄′

1 coincided with crosswind regions of negative (positive) v̄′
3, the latter

referred to as downwelling limbs (upwelling limbs). Crosswind regions of positive
and negative v̄′

1 extended throughout the entire water column and even into the
buffer layer within the viscous wall region, as shown by the autocorrelations. The
partially averaged downwind component, v̄′

1, exhibited near-bottom intensification,
in agreement with observations. Furthermore, the ratio of the crosswind length of
upwelling limbs to the crosswind length of downwelling limbs was in agreement with
observed values. None of these features were present in the vertical structure of the
turbulent shear flow without LC.

Further differences between the flows with and without LC were seen in terms
of the resolved Reynolds stress tensor and its state of anisotropy. Differences were
seen throughout the entire water column, but more importantly in the bottom third
of the water column. The flow without LC exhibited a behaviour typical of shear-
dominated turbulent flows in which the downwind component of the resolved normal
Reynolds stress is much larger than the other two components, often referred to
as axisymmetric cigar-shaped turbulence. The flow with LC behaved differently as
the crosswind component of the resolved normal Reynolds stress was larger, thereby
leading the turbulence towards an axisymmetric pancake-shaped state in which the
downwind and crosswind components are much greater than the vertical component.
This tendency towards a pancake-shaped state was also exhibited by the turbulence
measured in Part 1. Even more remarkably, this tendency was seen only in the LES
of the flow with LC generated by intermediate waves representative of the field
observations. This tendency was not the case in a second LES of a flow with LC
generated by shorter waves.

The previously summarized results are encouraging and suggest further avenues
of research. Better agreement between observed and LES-predicted turbulence
statistics could be pursued. Including rotational effects could potentially lead to
better agreement; however, this is not likely to occur with the present numerical
discretization which only permits periodicity in the horizontal directions, thus it is
an unbounded horizontal domain. Instead, a bounded horizontal domain and thus a
different discretization would have to be considered in order to represent accurately
rotational effects in the presence of the nearby coastal boundary, which is the situation
in which the measurements in Part 1 were taken. An avenue more likely to lead to
better agreement between observations and simulations would be performing LES in
quasi-equilibrium in which a time-varying pressure gradient is incorporated into the
governing equations in order to represent the tidal component of the velocity as well
as the pressure-driven geostrophic component of the velocity parallel to the coast,
suggested in Part 1. In conclusion, despite the constraints of the present LES in trying
to approximate field conditions, numerous characteristic features observed in LSC
were reproduced numerically.
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Figure 22. Colour maps of partially averaged fluctuating velocity components (normalized
by Uc

1 ) on the (x2, x3)-plane for flow with LC generated by intermediate waves (i.e. λ=6H )
with Lat = 0.7 at Re= 180. (a) v̄′

1/Uc
1 , (b) v̄′

3/Uc
1 , (c) v̄′

2/Uc
1 . See figure 3 for colour maps

corresponding to the same flow but with Re= 395.
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Appendix A. Effects of Reynolds number
As mentioned earlier, the Reynolds number of the field observations is much greater

than that of the simulations. In the observations, Re =O(50 000–100 000), whereas
in the simulations previously discussed, Re =395. In order to verify that the main
characteristics of these simulations were not adversely affected by low-Reynolds-
number effects, a simulation of flow with LC generated by intermediate waves with
Lat =0.7 at Re =180 was carried out. The dimensions of the computational domain
were (L1/δ, L2/δ, L3/δ) = (4π, 8π/3, 2) and the grid was (32 × 64 × 97) with b = 0.923.

Figure 22 shows the vertical/crosswind structure of partially averaged fluctuating
velocity components (i.e. v̄′

i) normalized by the mean streamwise velocity at mid-
depth, Uc

1 . The major features observed are very similar to those of v̄′
i in the flow at

Re = 395, shown in figure 3. The main difference occurs in the ratio of the spanwise
length of the upwelling limb to the spanwise length of the downwelling limb, r . In the
flow at Re= 180, the mid-depth value of r is 1.6, whereas in the flow at Re= 395, this
value is 1.4. The latter ratio is in closer agreement with the ratios of 1.1–1.3 reported
in the observations (Part 1). A lower value of r at higher Reynolds number can be
attributed to the resolved turbulent kinetic energy (TKE) at the surface. In the flow
at higher Reynolds number, TKE at the surface is greater, thereby generating greater
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Figure 23. Mean downwind velocity profiles (normalized by Uc
1 ) for flows with LC generated

by intermediate waves (i.e. λ= 6H ) with Lat = 0.7 at different Reynolds numbers. , flow
at Re =395; - - -, flow at Re= 180.

mixing there. Because the downwelling limb is generated at the surface, it is more
intensely mixed in the flow at higher Re and thus more diffuse. Owing to conservation
of mass, a more diffuse downwelling limb leads to a less diffuse upwelling limb, and
thus a lower value of r .

In addition to the similar structure of the Langmuir cells, there are other major
characteristics of the flows at Re = 180 and Re= 395 that are similar. For example, the
ordering of the resolved normal Reynolds stresses for the flow at Re =395 (figure 10a)
follows the same ordering in the lower, middle and upper thirds of the water column,
as in the flow at Re =180 (figure 20a). Consequently, the trajectory of the Lumley
invariant map is similar for both flows (cf. figures 13a and 21b).

Figure 23 compares the mean streamwise velocity for the flows at Re= 180 and
Re= 395. The main difference between these velocity profiles is the slope at the
bottom. Because the flow at higher Re is driven by a higher stress at the surface, the
vertical gradients of the velocity at the top surface and at the bottom wall are greater.
Additionally, the velocity profile in the flow at Re= 395 is better mixed above the
bottom boundary layer, as expected in a flow with higher Re.

Appendix B. Domain size
In order to verify that the resolution of a single Langmuir cell does not have an

adverse impact on the results, a second simulation of the flow with LC generated
by intermediate waves with Lat = 0.7 at Re = 180 was performed in a domain with
a spanwise length twice that of the earlier simulation. The earlier simulation was
performed in a domain with L2/δ = 8π/3 and the current simulation was performed
with L2/δ = 16π/3; in both simulations, L1/δ = 4π. The earlier simulation was
performed on a (32 × 64 × 97) grid while the current simulation was performed
on a (32 × 128 × 97) grid; in both simulations, b = 0.923. Because the spanwise
domain length was twice that in the current simulation, it required twice the number
of grid points in x2 to preserve the grid resolution.

Figure 24 depicts the vertical/crosswind structure of partially averaged fluctuating
velocity components, v̄′

i (normalized by Uc
1 ), associated with Langmuir cells. The

expanded computational domain contains two Langmuir cells, compared to the
original domain in which one cell was resolved. Thus, increasing the spanwise
computational domain length did not trigger a re-sizing of the single-cell structure
previously obtained so as to re-occupy the expanded domain. The mid-depth ratio of
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Figure 24. Colour maps of partially averaged fluctuating velocity components (normalized
by Uc

1 ) on the (x2, x3)-plane for flow with LC generated by intermediate waves (i.e. λ= 6H ),
Lat = 0.7, Re= 180 and expanded crosswind domain length (L2/δ = 16π/3). (a) v̄′
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1 . See figure 22 for colour maps corresponding to same flow but with
L2/δ = 8π/3.
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Figure 25. (a) Mean downwind velocity profiles (normalized by Uc
1 ) in flows with LC

generated by intermediate waves (i.e. λ= 6H ) with Lat = 0.7, Re= 180 and different crosswind
domain length L2/δ. (b) Lumley invariant map for flow with L2/δ = 16π/3. See figure 21(c)
for a map corresponding to same flow but with L2/δ = 8π/3. In (a) , L2/δ = 16π/3; - - -,
L2/δ = 8π/3.

the spanwise length of the upwelling limbs to the spanwise length of the downwelling
limbs is approximately 1.6, just as it was in the earlier simulation.

Further results of the simulation with the expanded spanwise domain can be seen
in figure 25. Hardly any difference is seen between the original simulation and the
current one in terms of mean velocity and Lumley invariant maps.
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Appendix C. Effects of grid cell size and subgrid-scale closure
This section presents studies exploring effects of grid cell size (or grid resolution)

and subgrid-scale (SGS) closure on the results of LES in flow with LC generated
by intermediate waves with Lat = 0.7. The effects of grid resolution and SGS closure
are discussed in the same section because they are related to one another. As grid
resolution is increased, the impact of the SGS closure weakens. Additionally, it is
expected that effects due to grid resolution and subgrid-scale closure have a stronger
impact on the LC flow at Re= 180 with the (32×64×97) grid than on the LC flow at
Re= 395 with the (96 × 96 × 97) grid because of the coarser resolution in the former.
Thus, results shown in this section were obtained with LC flow at Re= 180.

Simulation results obtained with the dynamic Smagorinsky closure discussed in
§ 2.2 and the dynamic mixed closure of Morinishi & Vasilyev (2001) are compared.
In the latter closure, the deviatoric part of the SGS stress is computed as

τ d
ij = CL(¯̄ui

¯̄uj − ūi ūj )
d + 2(Cs∆̄)2|S̄|S̄ij . (C 1)

In the former closure, τ d
ij is given by (2.6). The coefficient (Cs∆̄)2 in (C 1) is computed

dynamically in the same way as before in (2.7). The coefficient CL is computed
dynamically as

CL =

〈
[Lij + 2(Cs∆̄)2Mij ]H

d
ij

〉〈
Hd

klH
d
kl

〉 , (C 2)

where Lij and Mij are specified in (2.8) and (2.9), respectively, and

Hij = (
̂̄̂
ui

ˆ̄uj − ˆ̂̄
ūi

ˆ̂̄
ūj ) − ( ̂̄uiūj − ̂̄̄ui

¯̄uj ). (C 3)

Recall that the hat notation ·̂ , denotes application of a test filter over the horizontal
directions of the flow, as discussed in § 2.2. The bar notation, ·̄ , denotes application
of the grid filter, implicitly set by the numerical method. Knowledge of the grid filter,
or at least an approximation to the grid filter, is required in order to compute the
tensor Hij . As an approximation to grid filtering, the following operation suggested
by Morinishi & Vasilyev is used:

f̄ (x∗
i ) = 1

24
[f (x∗

i − hi) + 22f (x∗
i ) + f (x∗

i + hi)], (C 4)

where f̄ (x∗
i ) is the function f filtered over the xi-direction evaluated at xi = x∗

i and hi

is the grid cell size in the xi-direction. The width characterizing the filter induced by
the operation in (C 4) is ∆̄i = hi . In the current implementation, the filter operation
in (C 4) was applied over periodic directions of the flow (x1 and x2).

Before studying the effects of grid resolution and SGS closure, it is worth considering
the Reynolds-averaged governing equations. Using the continuity equation, the viscous
term in the momentum equation in (2.1) may be expressed as

1

Re

∂2ūi

∂x2
j

=
∂τ ν

ij

∂xj

, (C 5)

where the viscous stress is

τ ν
ij =

1

Re

(
∂ūi

∂xj

+
∂ūj

∂xi

)
. (C 6)
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Figure 26. Profiles of mean velocity (normalized by Uc
1 ) for flows with LC at Re= 180

(λ= 6H,Lat = 0.7) with different grid resolutions and subgrid-scale closures. - - -, simulation
on (32×64×97) grid with dynamic Smagorinsky closure; , simulation on (48×96×145)
grid with dynamic Smagorinsky closure; , simulation on (32 × 64 × 97) grid with dynamic
mixed closure.

Using the decomposition in (3.1) and equations (C 5) and (C 6), the x1-momentum
equation becomes

f (x3) = −d〈ū′
1ū

′
3〉

dx3

+
d
〈
τ d
13

〉
dx3

+
d
〈
τ ν
13

〉
dx3

= 0. (C 7)

Integrating the previous expression in x3 leads to

g(x3) = −
〈
ū′

1ū
′
3

〉
+

〈
τ d
13〉 + 〈τ ν

13

〉
= C, (C 8)

where C is a constant. This constant can be determined by evaluating function g(x3)
at the bottom wall (at x3 = 0). At x3 = 0, the 1–3 component of the resolved Reynolds
stress tensor (〈ū′

1ū
′
3〉) and the 1–3 component of the subgrid-scale stress tensor (τ d

13)
both vanish. Thus, C is equal to the averaged 1–3 component of the viscous stress
tensor at the bottom wall (i.e. C = 〈τ ν

13〉|x3 = 0). Note that the 1–3 component of the
subgrid-scale stress tensor and all of the other components of this tensor vanish at
the bottom wall for both the dynamic Smagorinsky closure and the dynamic mixed
closure. Now that C has been determined, (C 8) may be re-expressed as

g(x3)〈
τ ν
13

〉∣∣
x3=0

= − 〈ū′
1ū

′
3〉〈

τ ν
13

〉∣∣
x3=0

+

〈
τ d
13

〉〈
τ ν
13

〉∣∣
x3=0

+

〈
τ ν
13

〉〈
τ ν
13

〉∣∣
x3=0

= 1. (C 9)

Note that satisfaction of (C 7) serves as an indicator for turbulence under statistical
equilibrium. For the flow configurations with and without LC, global conservation of
streamwise momentum implies that the plane-averaged bottom stress should be equal
to the prescribed surface stress (in the temporal mean). In all the cases presented in
this paper, temporal/plane averages of turbulent quantities were collected once the
plane-averaged bottom stress normalized by τs was close to one (in the temporal mean)
throughout several flow-throughs. These averages were collected over a sufficiently
long time period such that the relation in (C 7) was satisfied. Averaging over longer
time periods resulted in nearly indistiguishable temporal/horizontal averages of
turbulent quantities, thereby signalling that the turbulence had reached a statistical
equilibrium.

Figures 26 and 27 compare mean streamwise velocity and resolved normal Reynolds
stress components for three simulations all with LC generated by intermediate waves,
Lat =0.7 and Re = 180. One of the simulations was performed with the dynamic
Smagorinsky closure, and another with the dynamic mixed closure, both on the
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Figure 27. Resolved normal Reynolds stress components (normalized by Uc
1

2) for flow with
LC at Re= 180 ps (λ= 6H , Lat = 0.7) with different grid resolutions and subgrid-scale closures.
(a) 〈ū′

1ū
′
1〉/Uc2

1 , (b) 〈ū′
2ū

′
2/Uc2

1 , (c) 〈ū′
3ū

′
3〉/Uc2

1 . - - -, simulation on (32×64×97) grid with dynamic
Smagorinsky closure; , simulation on (48 × 96 × 145) grid with dynamic Smagorinsky
closure; , simulation on (32 × 64 × 97) grid with dynamic mixed closure.

(32 × 64 × 97) grid with b = 0.923 discussed earlier. A third simulation was performed
with the dynamic Smagorinsky closure, but on a finer (48 × 96 × 145) grid with
b =0.859. Mean streamwise velocity profiles (figure 26) are nearly indistinguishable
in the three simulations. The simulations with equal resolution and different subgrid-
scale closures predict values of 〈ū′

1ū
′
1〉 very close to each other. In terms of 〈ū′

2ū
′
2〉, the

simulation with the dynamic mixed closure predicts slightly lower values, especially
in the upper and lower sections of the water column (figure 27b). In terms of
〈ū′

3ū
′
3〉, the simulation with the dynamic mixed closure predicts slightly lower values,

especially in the middle of the water column. These differences between the results
with dynamic Smagorinsky and dynamic mixed closures are negligible. Most of the
differences between the simulations with the dynamic Smagorinsky closure at different
resolutions are negligible as well, thus verifying that the simulation on the coarser grid
was not adversely affected by grid size. The main difference between the simulations
with the dynamic Smagorinsky closure at different resolutions is in the predicted
value of 〈ū′

1ū
′
1〉 at the top surface. The simulation at coarser resolution overpredicts

〈ū′
1ū

′
1〉 by about 10 % relative to the simulation at finer resolution. This is attributable

to the effect of the SGS closure which is greatest near the top surface. The impact of
the SGS closure is greatly reduced with grid refinement, as will be shown next.

Figure 28 shows the dominant shear components (i.e. the 1–3 components) of
resolved Reynolds stress, viscous stress and subgrid-scale stress in the three simulations
previously discussed. In the simulation with the dynamic Smagorinsky closure, the
1–3 component of the subgrid-scale stress is given as τ d

13 = 2νT S̄13 where the eddy
viscosity, νT , was defined in (2.6) and S̄13 = (ū1,3 + ū3,1)/2. As discussed earlier, the
presence of Langmuir circulations causes homogenization of the streamwise velocity
in the middle of the water column. Consequently, the presence of the Langmuir
circulations reduces the magnitude of S̄13 and thus of τ d

13 to nearly zero, especially
in the middle third of the water column (figure 28a). In the case of the dynamic
mixed model, τ d

13 is not affected as much by homogenization of streamwise velocity
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Figure 28. Mean dominant shear (1–3) component of resolved Reynolds stress, viscous stress
and subgrid-scale stress for flows with LC Re= 180 (λ= 6H,Lat = 0.7) with different grid
resolutions and subgrid-scale closures. (a) Simulation on (32 × 64 × 97) grid with dynamic
Smagorinsky closure; (b) simulation on (32 × 64 × 97) grid with dynamic mixed closure; (c)
simulation on (48 × 96 × 145) grid with dynamic Smagorinsky closure. - - -, 1–3 component
of resolved Reynolds stress (i.e. −〈ū′

1ū
′
3〉); , 1–3 component of mean viscous stress (i.e.

(1/Re) d〈ū1〉/dx3); − · −, 1–3 component of mean subgrid-scale stress (i.e. 〈τ d
13〉); , sum of

previous three quantities. All quantities are normalized by the value of 〈τ ν
13〉 at the bottom

wall (i.e. 〈τ ν
13〉|x3 = 0).

because it is not solely proportional to S̄13 (see (C 1)). In the middle third of the
water column (figure 28a, b), τ d

13 given by the dynamic mixed closure is greater than
τ d
13 given by the dynamic Smagorinsky closure. In both simulations with the different

subgrid-scale closures, the presence of Langmuir cells also tends to drive the 1–3
component of the mean viscous stress (i.e. 〈τ ν

13〉 = 〈ū1,3〉/Re) close to zero. Taking this
into consideration together with the relation in (C 7), higher values of 〈τ d

13〉 lead to
lower values of −〈ū′

1ū
′
3〉 when comparing the simulation using the dynamic mixed

closure to its counterpart using the dynamic Smagorinsky closure. Note that for both
of these simulations as well as for the simulation at greater resolution, the relation in
(C 9) is satisfied throughout the entire water column.

Comparing the simulations using the dynamic Smagorinsky closure at different
resolutions (figure 28a, c), shows that refining the grid leads to a reduction of 〈τ d

13〉,
which is a well-known attribute of the dynamic closure. This reduction is appreciable
in regions near the bottom wall and near the top surface where values of 〈τ d

13〉 are
larger than elsewhere.

Appendix D. Transport equations
D.1. Resolved Reynolds stress

Following the Reynolds decomposition, ūi = 〈ūi〉 + ū′
i , the transport equation for the

mean resolved Reynolds stress tensor, 〈ū′
i ū

′
j 〉, can be written as

∂

∂t
〈ū′

i ū
′
j 〉 + 〈ūk〉 ∂

∂xk

〈ū′
i ū

′
j 〉 = Pij +Qij + Tij + T

sgs
ij +Dij +Aij +Bij + εij + ε

sgs
ij , (D 1)
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where

Pij = −〈ū′
i ū

′
k〉∂〈ūj 〉

∂xk

− 〈ū′
j ū

′
k〉∂〈ūi〉

∂xk

(mean shear production rate), (D 2a)

Qij =
1

La2
T

[
εjlkφ

s
l 〈ω̄′

kū
′
i〉 + εilkφ

s
l 〈ω̄′

kū
′
j 〉

]
(C-L (Langmuir) forcing rate), (D 2b)

Tij = − ∂

∂xk

〈ū′
i ū

′
j ū

′
k〉 (turbulent transport rate), (D 2c)

T
sgs
ij =

∂

∂xk

[
〈ū′

iτ
d ′

jk 〉 + 〈ū′
j τ

d ′

ik 〉
]

(SGS transport rate), (D 2d)

Dij =
1

Re

∂2

∂x2
k

〈ū′
i ū

′
j 〉 (viscous diffusion rate), (D 2e)

Aij = − ∂

∂xk

[δjk〈Π̄ ′ū′
i〉 + δik〈Π̄ ′ū′

j 〉] (pressure transport rate), (D 2f)

Bij = 2〈Π̄ ′S̄ ′
ij 〉 (pressure–strain redistribution rate), (D 2g)

εij = − 2

Re

〈
∂ū′

i

∂xk

∂ū′
j

∂xk

〉
(viscous dissipation rate), (D 2h)

ε
sgs
ij = −

〈
τ d ′

ik

∂ū′
j

∂xk

〉
−

〈
τ d ′

jk

∂ū′
i

∂xk

〉
(SGS dissipation rate). (D 2i)

In general,

〈a′
ij b

′
kl〉 = 〈aijbkl〉 − 〈aij 〉〈bkl〉. (D 3)

D.2. Resolved turbulent kinetic energy

Similarly, the transport equation for mean resolved turbulent kinetic energy, q̄ ≡
〈ū′

i ū
′
i〉/2, can be expressed as

∂q̄

∂t
+ 〈ūk〉 ∂q̄

∂xk

= P + Q + T + T sgs + D + A + ε + εsgs, (D 4)

where

P = −〈ū′
i ū

′
j 〉∂〈ūi〉

∂xj

(mean shear production rate), (D 5a)

Q =
1

La2
T

εijkφ
s
j 〈ω̄′

kū
′
i〉 (C-L (Langmuir) forcing rate), (D 5b)

T = − ∂

∂xj

〈q̄ū′
j 〉 (turbulent transport rate), (D 5c)

T sgs =
∂

∂xj

〈
ū′

iτ
d ′

ij

〉
(SGS transport rate), (D 5d)

D =
1

Re

∂2q̄

∂x2
j

(viscous diffusion rate), (D 5e)

A = − ∂

∂xj

〈Π̄ ′ū′
j 〉 (pressure transport rate), (D 5f)

ε = − 1

Re

〈
∂ū′

i

∂xj

∂ū′
i

∂xj

〉
(viscous dissipation rate), (D 5g)

εsgs = −
〈
τ d ′

ij S̄ ′
ij

〉
(SGS dissipation rate). (D 5h)
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Appendix E. Numerical method
E.1. Temporal discretization

The continuity and momentum equations in (2.1) are solved on a non-staggered grid
using the second-order time accurate semi-implicit fractional step method analysed
by Armfield & Street (2000). Fractional-step methods integrate the equations in (2.1)
in a segregated manner. In other words, the momentum equations are first solved for
the velocity and some form of Poisson’s equation is solved for pressure. The Poisson’s
equation is derived using the continuity and momentum equations. Thus, solution of
this equation provides the pressure and also acts to enforce continuity.

For simplicity, the advection, gradient of the subgrid-scale stress and the C-L vortex
force terms are gathered into function Hi as

Hi(ūk) = ūj

∂ūi

∂xj

−
∂τ d

ij

∂xj

− εijk

1

La2
t

φs
j ω̄k. (E 1)

Reverting to vector notation (i.e. ū =(ū1, ū2, ū3), ∇ = (∂x1
, ∂x2

, ∂x3
), H = (H1, H2, H3)

and so on) the terms in (E 1) are explicitly discretized using the second-order time
accurate Adams–Bashforth scheme as

N(ūn, ūn−1) = 3
2

H(ūn) − 1
2

H(ūn−1), (E 2)

where the superscripts refer to time steps n and n − 1. Using the second-order
time accurate Crank–Nicolson scheme to discretize the viscous term together with
the previous Adams–Bashforth scheme, the discretized momentum equation may be
re-expressed as(

1

�t
− 1

2Re
∇2

)
�ūn+1

∗ = −N(ūn, ūn−1) +
1

Re
∇2ūn − ∇Π̄n in Ω, (E 3a)

t i · ūn+1
∗ = 0 for i = 1, 2 on ∂Ω1, (E 3b)

(n · ∇)
(
ūn+1

1∗ , ūn+1
2∗

)
= (Re, 0) on ∂Ω2, (E 3c)

ūn+1
∗ = ūn + �ūn+1

∗ in Ω + ∂Ω. (E 3d)

where ūn+1
∗ = (ūn+1

1∗ , ūn+1
2∗ , ūn+1

3∗ ), �t is the time step, n is the unit normal vector to either
the bottom or top boundary, ∂Ω1 denotes the bottom boundary and ∂Ω2 denotes
the top boundary. Furthermore, Ω denotes the interior of the domain excluding the
boundaries and ∂Ω denotes both bottom and top boundaries. Vectors t1 and t2 are
linearly independent unit vectors normal to n. The solution of (E 3) at time tn+1,
intermediate solution ūn+1

∗ , does not satisfy the continuity equation. To enforce the
divergence-free condition, the following Poisson’s equation for pressure is first solved:

∇2(�Π̄n+1) =
1

�t
∇ · ūn+1

∗ in Ω + ∂Ω, (E 4a)

∂�Π̄n+1

∂n
=

1

�t
n · ūn+1

∗ on ∂Ω, (E 4b)

Π̄n+1 = Π̄n + �Π̄n+1 in Ω + ∂Ω. (E 4c)

The divergence-free velocity is finally obtained as

ūn+1 = ūn+1
∗ − �t ∇(�Π̄n+1) in Ω + ∂Ω. (E 5)
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In (E 3b), the component of the intermediate velocity normal to the bottom and top
boundaries (i.e. n · ūn+1

∗ = ūn+1
3∗ on ∂Ω) is not specified and thus kept free as given by

the solution of (E 3a). In turn, this free velocity affects the solution of the Poisson’s
equation for pressure through the boundary condition in (E 4). As discussed by Slinn &
Riley (1998), this is required to ensure convergence of the method. However, at the
end of the time step, when the final velocity is computed via (E 5), ūn+1

3 is set to zero
on ∂Ω , thus satisfying the true boundary condition. Validation studies, not shown,
demonstrated that this splitting of the momentum and continuity equation together
with the chosen Adams–Bashforth and Crank–Nicolson schemes is second-order
accurate in time.

E.2. Spatial discretization

The spatial discretization is hybrid, as it makes use of fast Fourier transforms in the
horizontal direction (x1 and x2) and high-order finite differences in the vertical
direction (x3). Taking the two-dimensional Fourier transform of the temporally
discrete momentum equation in (E 3) and denoting a Fourier transformed quantity
with an over-hat, ·̂ , leads to(

1

�t
+

1

2Re
|kh|2 − 1

2Re

δ2

δx2
3

)
�̂ū

n+1

∗ = −N̂(ūn, ūn−1) − ∇s
ˆ̄Π

n

+
1

Re

{
−|kh|2 +

δ2

δx2
3

}
ˆ̄u

n
in Ω, (E 6a)

(
ˆ̄u
n+1

1∗ , ˆ̄u
n+1

2∗
)

= (0, 0) on ∂Ω1, (E 6b)(
δ ˆ̄u

n+1

1∗
δx3

,
δ ˆ̄u

n+1

2∗
δx3

)
= (Re, 0) on ∂Ω2, (E 6c)

ˆ̄u
n+1

∗ = ˆ̄u
n
+ �̂ū

n+1

∗ in Ω, (E 6d)

where kh = k1e1+k2e2 and k1 (resp. e1) and k2 (resp. e2) are the wavenumbers (resp. unit
vectors) in the x1 and x2 directions. The operator δ/δx3 denotes the finite-difference
approximation of ∂/∂x3 and ∇s =(ik1, ik2, δ/δx3). Further information regarding the
finite-difference operators can be found in Appendix F. Taking the two-dimensional
Fourier transport of the Poisson’s equation in (E 4c) leads to(

−|kh|2 +
δ2

δx2
3

)
�̂Π̄

n+1

=
1

�t

(
ik1

ˆ̄u
n+1

1∗ + ik2
ˆ̄u
n+1

2∗ +
δ

δx3

ˆ̄u
n+1

3∗

)
in Ω + ∂Ω, (E 7a)

δ�̂Π̄
n+1

δx3

=
1

�t
ˆ̄u
n+1

3∗ on ∂Ω, (E 7b)

ˆ̄Π
n+1

= ˆ̄Π
n

+ �̂Π̄
n+1

in Ω + ∂Ω. (E 7c)

The velocity at time step n + 1 becomes

ˆ̄u
n+1

1 = ˆ̄u
n+1

1∗ − i �t k1�̂Π̄
n+1

in Ω + ∂Ω, (E 8a)

ˆ̄u
n+1

2 = ˆ̄u
n+1

2∗ − i �t k2�̂Π̄
n+1

in Ω + ∂Ω, (E 8b)

ˆ̄u
n+1

3 = ˆ̄u
n+1

3∗ − �t
δ

δx3

�̂Π̄
n+1

in Ω + ∂Ω. (E 8c)
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At the end of the time step, after the final velocity is computed via (E 8), ˆ̄u
n+1

3 is set

to zero on ∂Ω (the bottom and top boundaries). This is also done for ˆ̄u
n+1

1 and ˆ̄u
n+1

2

on ∂Ω1 (the bottom boundary).

E.3. Grid-stretching

In order to resolve strong gradients in the x3-direction near the bottom boundary
and the top surface, a greater number of points is clustered near these two regions.
Consider a set of equidistant points at locations ξi discretizing the vertical direction of
the domain in figure 1. Clustering or stretching of these points may be accomplished
through a mapping hyperbolic function (with existing real inverse) such as

zi = (1/b) tanh[ξi tanh−1(b)]. (E 9)

This function takes the set of N equidistant points ξi discretizing the interval [−1, 1]
and maps them to the set of N non-uniformly spaced points zi in [−1, 1]. The points
zi are clustered near the upper and lower bounds of the interval. Coefficient b is a
measure of the clustering.

The finite-difference approximations of ∂/∂x3 and ∂2/∂x2
3 used here (i.e. δ/δx3 and

δ2/δx2
3 , see Appendix F) can be applied only over points which are equidistant. Thus,

derivatives on the non-uniform grid are computed in terms of derivatives on the
equidistant grid and derivatives of the inverse of the mapping function as

df

dz
=

df

dξ

dξ

dz
,

d2f

dz2
=

d2f

dξ 2

(
dξ

dz

)2

+
df

dξ

d2ξ

dz2
, (E 10)

where z and ξ denote zi and ξi , respectively, in (E 9). Note that this approach to
clustering leads to non-uniformly spaced grid points in the vertical direction only.
The grid points are uniformly spaced in the horizontal directions.

E.4. De-alisasing

The nonlinear advection term in (E 1) generates scales at high wavenumbers (i.e. small
scales) unresolvable by the grid. This effect is reflected through an accumulation
of energy at the highest resolvable wavenumbers, often referred to as aliasing. In
order to prevent this spurious accumulation, de-aliasing is performed using the well-
known 3/2-rule in the horizontal directions. In the vertical direction, the high-order
(fourth-order) filter discussed by Slinn & Riley (1998) (see Appendix F) is used in
order to attenuate the spurious high-wavenumber energy accumulation while fully
preserving the more energetic scales at lower wavenumber. Note that the subgrid-scale
closures (the dynamic Smagorinsky and dynamic mixed subgrid-scale stress models)
are nonlinear and can give rise to aliasing. However, the contribution of these closures
is small and de-aliasing brings about a negligible change in results, thus de-aliasing
of the closures was omitted.

E.5. Validation studies

Numerous simulations using the previously described method were carried out. The
most rigorous were LES and direct numerical simulation (DNS) of turbulent channel
flow between parallel walls at Re =180. Looking at results such as mean velocity
and resolved Reynolds stresses and one-dimensional spectra, LES performed with the
current numerical method was more accurate than LES performed with lower-order
discretization methods, as expected. Furthermore, the dynamic Smagorinsky model
coefficient in (2.7) was seen to possess the expected asymptotic behaviour in the
near-wall region (see Pope 2000). DNS with the current method also performed well
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as results on a (96 × 96 × 97) grid with b = 0.923 were nearly indistinguishable from
the DNS results of Kim, Moin & Moser (1997). The DNS of Kim, Moin & Moser
was performed on a (128 × 128 × 128) grid.

E.6. Parallel implementation

The Fortran 90 program executing the numerical method was written in parallel
using message passing interface (MPI) protocol. The parallel structure of the code is
similar to that presented by Winters, MacKinnon & Mills (2004). When working with
variables in real space, the code uses MPI to partition the domain into horizontal (x1,
x2) slabs on which it can perform horizontal two-dimensional fast Fourier transforms
without parallel communications. After the Fourier transforms are performed, the
code re-partitions the domain into vertical (x2, x3) columns via MPI. Finite-
differencing in the x3-direction is performed on these vertical columns without parallel
communications.

Appendix F. Finite-difference stencils
Using compact finite-difference schemes, second- and first-order derivatives of

function f (z) on [a, b] are obtained. Consider the set {z1, z2, z3, · s, zN, zN+1} of
equidistant points gridding the interval [a, b] with h being the distance between the
points. The second and first derivatives of f (z) may be obtained from

A f ′′ = B f thus f ′′ = {A−1B} f (F 1)

and

C f ′ = D f thus f ′ = {C−1D} f (F 2)

where f = (f1, f2, · s, fN )t and fi is f (z) evaluated at zi ∈ [a, b]. Matrices A, B, C
and D are banded. However, matrices A−1B and C−1D are full. Next, the stencils used
to generate these matrices are detailed.

F.1. First-order derivative

Let f ′
i denote the first derivative of f (z) at z = zi . For i > 2 and i < N , the first

derivative of function f (z) is approximated via

1
3
f ′

i−1 + f ′
i + 1

3
f ′

i+1 = 1
h

(
− 1

36
fi−2 − 7

9
fi−1 + 7

9
fi+1 + 1

36
fi+2

)
. (F 3)

Detailed analysis of this O(h6) approximation is given by Lele (1992). For i = 1, the
first derivative may be obtained from the following O(h5) approximation:

f ′
1 =

1

h
(c1f1 + c2f2 + c3f3 + c4f4 + c5f5 + c6f6 + c7f7 + c8f8) (F 4)

where

c1 = −(α0 − 28β0 + 13068)/5040, (F 5a)

c2 = +(α0 − 27β0 + 5040)/720, (F 5b)

c3 = −(α0 − 26β0 + 2520)/240, (F 5c)

c4 = +(α0 − 25β0 + 1680)/144, (F 5d)

c5 = −(α0 − 24β0 + 1260)/144, (F 5e)

c6 = +(α0 − 23β0 + 1008)/240, (F 5f)

c7 = −(α0 − 22β0 + 840)/720, (F 5g)

c8 = +(α0 − 21β0 + 720)/5040, (F 5h)
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α0 = 1809.257 and β0 = − 65.1944. For i = 2, the first derivative may be obtained
from the following O(h5) approximation:

f ′
2 =

1

h
(d1f1 + d2f2 + d3f3 + d4f4 + d5f5 + d6f6 + d7f7 + d8f8) (F 6)

where

d1 = −(α1 − 21β1 + 720)/5040, (F 7a)

d2 = +(α1 − 20β1 − 1044)/720, (F 7b)

d3 = −(α1 − 19β1 − 720)/240, (F 7c)

d4 = +(α1 − 18β1 − 360)/144, (F 7d)

d5 = −(α1 − 17β1 − 240)/144, (F 7e)

d6 = +(α1 − 16β1 − 180)/240, (F 7f)

d7 = −(α1 − 15β1 − 144)/720, (F 7g)

d8 = +(α1 − 14β1 − 120)/5040, (F 7h)

α1 = −262.16 and β1 = −26.6742. Similar expressions for the first derivatives are
defined at i = N and i =N + 1. The stencils in (F 4)–(F 7h) are analysed in detail by
Carpenter, Gottlieb & Abarbanel (1993).

F.2. Second-order derivative

For i > 2 and i < N , the second derivative of function f (z) is computed using the
following O(h6) approximation discussed by Lele (1992):

2
11

f ′
i−1 + f ′

i + 2
11

f ′
i+1 = 1

h2

(
3
44

fi−2 + 12
11

fi−1 − 51
22

fi + 12
11

fi+1 + 3
44

fi+2

)
. (F 8)

For i = 1, the second derivative may be obtained from the following O(h5)
approximation:

f ′′
1 =

1

h2
(c1f1 + c2f2 + c3f3 + c4f4 + c5f5 + c6f6 + c7f7 + c8f8) , (F 9)

where c1 = 5.211, c2 = −22.300, c3 = 43.950, c4 = −52.722, c5 = 41.000, c6 = −20.100,
c7 = 5.661 and c8 = − 0.700. For i = 2, the second derivative may be obtained from
the following O(h5) approximation:

f ′′
2 =

1

h2
(d1f1 + d2f2 + d3f3 + d4f4 + d5f5 + d6f6 + d7f7 + d8f8) , (F 10)

where d1 = 0.700, d2 = −0.389, d3 = −2.700, d4 = 4.750, d5 = − 3.722, d6 = 1.800,
d7 = −0.500 and d8 = 0.061. Similar expressions for the second derivatives are defined
at i =N and i = N + 1. The stencils in (F 9) and (F 10) are courtesy of T. L. Jackson
(University of Illinois at Urbana-Champaign, personal communication) and may be
derived using a similar approach to that of Carpenter et al. (1993).

When solving the Poisson’s equation for pressure in (E 7c), the following alternative
expressions are used (instead of (F 9)–(F 10)) leading to lower round-off errors. For
i = 1,

f ′′
1 = −1

h

49

10
f ′

1 +
1

h2

(
13 489

1800
f1 + 12f2 − 15

2
f3 +

40

9
f4 − 15

8
f5 +

12

25
f6 − 1

18
f7

)
(F 11)
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with truncation error 0.6572h6d8f/dz8. Note that the Neumann pressure boundary
condition in (E 7c) is assigned through the first term in the right-hand side of (F 11).
For i = 2,

11

128
f ′′

i−1 + f ′′
i +

11

128
f ′′

i+1

=
1

h2

(
585

512
f1 − 141

64
f2 +

459

512
f3 +

9

32
f4 − 85

512
f5 +

3

64
f6 − 3

512
f7

)
(F 12)

with truncation error 0.02101h6d8f/dz8. Similar expressions are used for i = N+1 and
i = N . The approximations in (F 11) and (F 12) and their corresponding truncation
errors were derived via Taylor series analysis.

F.3. Spatial filtering of advection terms

As discussed earlier, the advection terms in the momentum equations are spatially
filtered in the vertical direction in order to damp out scales of motion unresolvable
by the grid. The following fourth-order compact filter adapted for a non-uniform grid
(Slinn & Riley 1998) is used:

0.4f̃ i−1 + f̃ i + 0.4f̃ i+1 = 0.4fi−1 + fi + 0.4fi+1

− 1

80
(fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2)

− h

80

(
6γ2(zi)

γ 2
1 (zi)

)(
fi+2 − 2fi+1 + 2fi−1 − fi−2

2

)
− h2

80

(
4γ3(zi)

γ 3
1 (zi)

+
3γ 2

2 (zi)

γ 4
1 (zi)

)
(fi+1 − 2fi + ui−1)

− h3

80

(
γ4(zi)

γ 4
1 (zi)

)(
fi+1 − fi−1

2

)
(F 13)

where γ1 = ∂ξ/∂z, γ2 = ∂2ξ/∂z2, γ3 = ∂3ξ/∂z3, γ4 = ∂4ξ/∂z4 and ξ is the mapping
function in (E 9). Note that this stencil is not valid for points at the bottom and top
boundaries and for the first two horizontal planes of points off these boundaries. In
the current implementation, the filter is not applied at these points. This omission
does not have a negative impact on results.

A formal derivation of this compact filter can be made through Taylor series
analysis. From this analysis, we can see that the filtered function is an approximation
of the unfiltered function up to fourth-order. That is

f̃ = f + O(h4). (F 14)

The finite-difference approximations of the first and second derivatives in the vertical
(x3) direction (discussed in the previous subsection) introduce an error of O(h5) or
higher. Filtering the advection terms in the vertical direction using (F 13) introduces an
error of O(h4). Furthermore, using a spectral discretization in the horizontal (x1 and
x2) directions introduces an error of much higher order than the previously discussed
finite differencing and filtering operations. Thus, the current spatial discretization is at
least O(h4). A higher-order filter could potentially be introduced; however, this would
involve a more expensive computation at the expense of only minimally changing
results.
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